Example 1 :
Integrate tan-1 x
Solution :
∫ tan-1 x dx
∫ u dv = u v - ∫ v du
u = tan-1 x dv = dx
du = 1/(1 + x2) v = x
= ∫ tan-1 x dx
= (tan-1 x) x - ∫ x [1/(1 + x2)] dx
1 + x2 = t
2xdx = dt
xdx = dt/2
= (tan-1 x) x - ∫ (dt/2) (1/t) dx
= (tan-1 x) x - ∫ x [1/(1+x2)] dx
= (tan-1 x)x - ∫ x/(1+x2) dx
t = 1+x2
dt = 2xdx
x dx = dt/2
= (tan-1 x) x - (1/2)∫ dt/t
= x (tan-1 x) - (1/2) log t + C
= x tan-1 x- (1/2) log (1+x2) + C
Example 2 :
(sin-1x) (e^sin-1x)/√(1 - x²)
Solution :
∫ (sin-1x) (e^sin-1x)/√(1 - x²)
let t = sin-1x
dt = 1/√(1 - x²) dx
∫(sin-1x) (e^sin-1x)/√(1 - x2)dx = ∫tet dt
u = t dv = e ^t
du = dt v = e^t
∫ u dv = uv - ∫ vdu
= t et - ∫ et dt
= t et - et + C
= et(t - 1) + C
= e^sin-1x (sin-1x - 1) + C
Example 3 :
Integrate tan-1 [(3x-x3)/(1-3x2)]
Solution :
x = tan θ
= tan-1[(3tanθ - (tanθ)3)/(1-3(tan θ)2)]
= tan-1[(3tanθ - tan3θ)/(1-3tan2θ)]
= tan-1(tan 3 θ)
= 3θ
y = 3∫tan-1 x dx
u = tan-1 x dv = dx
du = 1/(1+x²) v = x
∫ u dv = uv - ∫v du
= 3{(tan-1x) x - ∫ x [1/(1+x²)] dx}
= 3{(tan-1x) x - ∫x/(1+x²) dx}
t = 1+x2
dt = 2x dx
x dx = dt/2
= 3{(tan-1x) x - ∫ (dt/2)(1/t)}
= 3{(tan-1x) x - (1/2)∫ 1/t dt}
= 3xtan-1x - (3/2) log(1+x2) + 3C
= 3xtan-1x - (3/2) log (1+x2) + C
Example 4 :
Integrate x sin-1 (x2)
Solution :
Let x2 = t
2x dx = dt
xdx = dt/2
= ∫x sin-1 (x2) dx
= (1/2) ∫ sin-1(t) dt
now we are going to apply the substitution method
u = sin-1(t) dv = dt
du = 1/√(1-t2) v = t
∫ u dv = uv - ∫v du
= (1/2) [tsin-1(t) -∫t (1/√(1-t2))dt]
= (1/2) [tsin-1(t) - ∫ t/√(1-t2)dt] ------ (1)
Let a = 1-t2
da = -2t dt
-da/2 = t dt
∫ t/√(1-t2) dt = ∫ (-da/2)/√a
= - (1/2)∫ (1/√a) da
= - (1/2) [√a/(1/2)]
= - (1/2) [2√a]
= - √(1-t2) + C
By applying = (1/2) [x2(sin-1 x2) - (- √(1-t2))]+ C
= (1/2) [x2(sin-1 x2) + √(1-(x2)2)]+ C
= (1/2) [x2(sin-1 x2) + √(1-x4)]+ C
Example 5 :
∫ 1/(4 + x2) dx
Solution :
∫1/(4 + x2) dx
Integrating 1/(a2 + x2) dx = (1/a) tan-1(x/a) + C
Comparing 4 + x2 with a2 + x2
a = 2 and x = x
∫1/(4 + x2) dx = (1/2) tan-1(x/2) + C
Example 6 :
∫ tan-1(2t) /(1 + 4t2) dt
Solution :
∫ tan-1(2t) /(1 + 4t2) dt
Let u = tan-1(2t)
du = 1/(1 + 4t2) dt
By changing the given integral in terms of u and du.
∫ tan-1(2t) /(1 + 4t2) dt = ∫ u du
= u2/2 + C
Applying the value of u, we get
= [tan-1(2t)]2/2 + C
Example 7 :
∫ 1/x√(x2 - 9) dx
Solution :
∫ 1/x√(x2 - 9) dx
Comparing ∫ 1/x√(x2 - 9) dx with ∫ 1/x√(x2 - a2) dx, we get (1/a) sec-1(x/a) + C
∫ 1/x√(x2 - 9) dx = (1/3) sec-1(x/3) + C
Example 8 :
∫ 1/x√(x2 - 25) dx
Solution :
∫ 1/x√(x2 - 25) dx
Comparing ∫ 1/x√(x2 - 9) dx with ∫ 1/x√(x2 - a2) dx, we get (1/a) sec-1(x/a) + C
∫ 1/x√(x2 - 25) dx = (1/5) sec-1(x/5) + C
Example 9 :
∫ tan(sin-1x) /√(1 - x2) dx
Solution :
∫ tan(sin-1x) /√(1 - x2) dx
Let u = sin-1x
Differentiate with respect to x
du = 1/√(1 - x2) dx
Replacing u and du in the given integral, we get
∫ tan(sin-1x) /√(1 - x2) dx = ∫ tan u du
= ∫ (sin u / cos u) du
= - ∫ (-sin u / cos u) du
= - ln cos u + C
= ln (cos u)-1 + C
= ln (1/cos u) + C
= ln (sec u) + C
Applying the value of u, we get
= ln (sec sin-1x) + C
Example 10 :
∫ tan(cos-1x) /√(1 - x2) dx
Solution :
∫ tan(cos-1x) /√(1 - x2) dx
Let u = cos-1x
Differentiate with respect to x
du = -1/√(1 - x2) dx
-du = 1/√(1 - x2) dx
Replacing u and du in the given integral, we get
∫ tan(cos-1x) /√(1 - x2) dx = -∫ tan u du
= ∫ (-sin u / cos u) du
= ln cos u + C
Applying the value of u, we get
= ln (cos cos-1x) + C
= ln (x) + C
Example 11 :
∫ sin (tan-1x) /(1 + t2) dt
Solution :
∫ tan(cos-1x) /√(1 - x2) dx
Let u = cos-1x
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
May 16, 25 09:14 AM
May 14, 25 11:50 PM
May 11, 25 12:34 AM