INTEGRATION BY PARTS WITH INVERSE TRIGONOMETRIC FUNCTIONS

Example 1 :

Integrate tan-1 x

Solution :

∫ tan-1 x dx

∫ u dv  =  u v - ∫ v du

u  =  tan-1 x            dv = dx

du  =  1/(1 + x2)         v = x

=  ∫ tan-1 x dx

=  (tan-1 x) x - ∫ x [1/(1 + x2)] dx

1 + x =  t

2xdx  =  dt

xdx  =  dt/2 

=  (tan-1 x) x - ∫ (dt/2)  (1/t) dx

=  (tan-1 x) x - ∫ x [1/(1+x2)] dx

=  (tan-1 x)x - ∫ x/(1+x2) dx

t  =  1+x2

dt  =  2xdx

x dx  =  dt/2

=  (tan-1 x) x - (1/2)∫ dt/t

=  x (tan-1 x) - (1/2) log t + C

=  x tan-1 x- (1/2) log (1+x2) + C

Example 2 :

(sin-1x) (e^sin-1x)/√(1 - x²)

Solution :

∫ (sin-1x) (e^sin-1x)/√(1 - x²)

let t  =  sin-1x

dt  =  1/√(1 - x²) dx

(sin-1x) (e^sin-1x)/√(1 - x2)dx  =  ∫tet dt

u  =  t        dv  =  e ^t

du  =  dt     v  =  e^t

∫ u dv  =  uv - ∫ vdu

=  t et - ∫ et dt

=  t et - et + C

=  et(t - 1) + C

=  e^sin-1x (sin-1x - 1) + C

Example 3 :

Integrate tan-1 [(3x-x3)/(1-3x2)]

Solution :

x  =  tan θ

=  tan-1[(3tanθ - (tanθ)3)/(1-3(tan θ)2)]

=  tan-1[(3tanθ - tan3θ)/(1-3tan2θ)]

=  tan-1(tan 3 θ)

=  3θ

y  =  3∫tan-1 x dx

u  =  tan-1 x           dv  =  dx

du  =  1/(1+x²)           v  =  x

∫ u dv  =  uv - ∫v du

=  3{(tan-1x) x -  ∫ x [1/(1+x²)] dx}

=  3{(tan-1x) x -  ∫x/(1+x²) dx}

t  =  1+x2

dt  =  2x dx

x dx  =  dt/2

=  3{(tan-1x) x -  ∫ (dt/2)(1/t)}

=  3{(tan-1x) x -  (1/2)∫ 1/t dt}

=  3xtan-1-  (3/2) log(1+x2) + 3C

=  3xtan-1-  (3/2) log (1+x2) + C

Example 4 :

Integrate x sin-1 (x2)

Solution :

Let x2  =  t

2x dx  =  dt

xdx  =  dt/2

=  ∫x sin-1 (x2) dx

=  (1/2) ∫ sin-1(t) dt

now we are going to apply the substitution method

u  =  sin-1(t)             dv = dt

du  =  1/√(1-t2)         v = t 

∫ u dv  =  uv - ∫v du

=  (1/2) [tsin-1(t) -∫t (1/√(1-t2))dt]

=  (1/2) [tsin-1(t) - ∫ t/√(1-t2)dt] ------ (1)

Let a = 1-t2

da  =  -2t dt

-da/2  =  t dt

∫ t/√(1-t2) dt  =  ∫ (-da/2)/√a

=  - (1/2)∫ (1/√a) da

= - (1/2) [√a/(1/2)]

= - (1/2) [2√a]

= - √(1-t2) + C

By applying =  (1/2) [x2(sin-1 x2) - (- √(1-t2))]+ C

=  (1/2) [x2(sin-1 x2) + √(1-(x2)2)]+ C

=  (1/2) [x2(sin-1 x2) + √(1-x4)]+ C

Example 5 :

∫ 1/(4 + x2) dx

Solution :

∫1/(4 + x2) dx

Integrating 1/(a2 + x2) dx = (1/a) tan-1(x/a) + C

Comparing 4 + x2 with a2 + x2

a = 2 and x = x

∫1/(4 + x2) dx = (1/2) tan-1(x/2) + C

Example 6 :

∫ tan-1(2t) /(1 + 4t2) dt

Solution :

∫ tan-1(2t) /(1 + 4t2) dt

Let u = tan-1(2t)

du = 1/(1 + 4t2) dt

By changing the given integral in terms of u and du.

∫ tan-1(2t) /(1 + 4t2) dt = ∫ u du

= u2/2 + C

Applying the value of u, we get

= [tan-1(2t)]2/2 + C

Example 7 :

∫ 1/x√(x2 - 9) dx

Solution :

1/x√(x2 - 9) dx

Comparing 1/x√(x2 - 9) dx with 1/x√(x2 - a2) dx, we get (1/a) sec-1(x/a) + C

1/x√(x2 - 9) dx = (1/3) sec-1(x/3) + C

Example 8 :

∫ 1/x√(x2 - 25) dx

Solution :

1/x√(x2 - 25) dx

Comparing 1/x√(x2 - 9) dx with 1/x√(x2 - a2) dx, we get (1/a) sec-1(x/a) + C

1/x√(x2 - 25) dx = (1/5) sec-1(x/5) + C

Example 9 :

∫ tan(sin-1x) /√(1 - x2) dx

Solution :

∫ tan(sin-1x) /√(1 - x2) dx

Let u = sin-1x

Differentiate with respect to x

du = 1/√(1 - x2) dx

Replacing u and du in the given integral, we get

∫ tan(sin-1x) /√(1 - x2) dx = ∫ tan u du

= ∫ (sin u / cos u) du

= - ∫ (-sin u / cos u) du

= - ln cos u + C

= ln (cos u)-1 + C

= ln (1/cos u) + C

= ln (sec u) + C

Applying the value of u, we get

= ln (sec sin-1x) + C

Example 10 :

∫ tan(cos-1x) /√(1 - x2) dx

Solution :

∫ tan(cos-1x) /√(1 - x2) dx

Let u = cos-1x

Differentiate with respect to x

du = -1/√(1 - x2) dx

-du = 1/√(1 - x2) dx

Replacing u and du in the given integral, we get

∫ tan(cos-1x) /√(1 - x2) dx = -∫ tan u du

= ∫ (-sin u / cos u) du

=  ln cos u + C

Applying the value of u, we get

= ln (cos cos-1x) + C

= ln (x) + C

Example 11 :

∫ sin (tan-1x) /(1 + t2) dt

Solution :

∫ tan(cos-1x) /√(1 - x2) dx

Let u = cos-1x

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 163)

    May 16, 25 09:14 AM

    digitalsatmath205.png
    Digital SAT Math Problems and Solutions (Part - 163)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 162)

    May 14, 25 11:50 PM

    digitalsatmath204.png
    Digital SAT Math Problems and Solutions (Part - 162)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 161)

    May 11, 25 12:34 AM

    Digital SAT Math Problems and Solutions (Part - 161)

    Read More