∫sin(ax+b) dx = -(1/a) cos (ax+b) + C
∫cos(ax+b) dx = (1/a) sin (ax+b) + C
∫sec2 (ax+b) dx = (1/a) tan (ax+b) + C
∫sec (ax+b) tan (ax+b) dx = (1/a) sec (ax+b) + C
∫cosec2 (ax+b) dx = -(1/a) cot (ax+b) + c
∫cosec (ax+b) cot (ax+b) dx = -(1/a) cosec (ax+b) + c
Question 1 :
(i) ∫cosec (2-x) cot (2-x) dx
(ii) ∫cosec (4x+2) cot (4x+2) dx
(iii) ∫cosec (3-2x) cot (3-2x) dx
(iv) ∫cosec (Lx+m) cot (Lx+m) dx
Solution :
(i)
∫cosec (2-x) cot (2-x) dx = -(1/-1) cosec (2-x) + C
= cosec (2 - x) + C
(ii)
∫cosec (4x+2) cot (4x+2) dx = -(1/4) cosec (4x+2) + C
= -cosec (4x+2)/4 + C
(iii)
∫cosec (3-2x) cot (3-2x) dx = -(1/-2) cosec (3-2x) + C
= cosec (3-2x)/2 + C
(iv)
∫cosec (Lx+m) cot (Lx+m) dx = -(1/L) cosec (Lx+m) + C
= -cosec (Lx+m)/L + C
Question 2 :
(i) ∫ sec (3+x) tan (3+x) dx
(ii) ∫ sec (3x+4) tan (3x+4) dx
(iii) ∫ sec (4-x) tan (4-x) dx
(iv) ∫ sec (4-3x) tan (4-3x) dx
(v) ∫sec (ax+b) tan (ax+b) dx
Solution :
(i)
∫ sec (3+x) tan (3+x) dx = (1/1) sec (3-x) + C
= sec (3-x) + C
(ii)
∫ sec (3x+4) tan (3x+4) dx = (1/3) sec (3x+4) + C
= sec (3x+4)/3 + C
(iii)
∫ sec (4-x) tan (4-x) dx = (1/-1) sec (4-x) + C
= - sec (4-x) + C
(iv)
∫ sec (4-3x) tan (4-3x) dx = (1/-3) sec (4-3x) + C
= - sec (4-3x)/3 + C
(v)
∫sec (a x + b) tan (a x + b) dx = (1/a) sec (a x + b) + C
Question 3 :
(i) ∫cosec (2-x) cot (2-x) dx
(ii) ∫cosec (4x+2) cot (4x+2) dx
(iii) ∫cosec (3-2x) cot (3-2x) dx
(iv) ∫cosec (Lx+m) cot (Lx+m) dx
Solution :
(i)
∫cosec (2-x) cot (2-x) dx = -(1/-1) cosec (2-x) + C
= cosec (2-x) + C
(ii)
∫cosec (4x+2) cot (4x+2) dx = -(1/4) cosec (4x+2) + C
= -cosec (4x+2)/4 + C
(iii)
∫cosec (3-2x) cot (3-2x) dx = -(1/-2) cosec (3-2x) + C
= cosec (3-2x)/2 + C
(iv)
∫cosec (Lx+m) cot (Lx+m) dx = -(1/L) cosec (Lx+m) + C
= - cosec (Lx+m)/L + C
Question 4 :
(i) 1/cos² (px + a)
(ii) 1/sin² (L - m x)
Solution :
(i)
∫ 1/cos2 (px+a) dx = ∫sec2(px+a) dx
∫sec2(px+a) dx = (1/p) tan (px+a) + C
= tan (px+a)/p + C
(ii)
∫ 1/sin2 (L-mx) dx = ∫cosec2 (L-mx) dx
∫cosec2 (L-m x) dx = - (1/-m) cot (L-mx) + C
= cot (L-mx)/m + C
Question 5 :
∫ (2x - 3)3 dx
Solution :
∫ (2x - 3)3 dx
Let t = 2x - 3
Diffrerentiating on both sides, we get
dt = 2(dx)
dx = (1/2) dt
∫ (2x - 3)3 dx = ∫ t3 (1/2)dt
= (1/2)∫ t3 dt
= (1/2)[t4/4] + C
= (1/8)(2x - 3)4 + C
Question 6 :
∫ cos (3x + 5) dx
Solution :
∫ cos (3x + 5) dx
Let t = 3x + 5
Differentitating with respect to x, we get
dt = 3(dx)
dx = (1/3) dt
∫ cos (3x + 5) dx = ∫ cos t (1/3) dt
= (1/3)∫ cos t dt
= (1/3) sin t + C
Applying the value of t, we gtet
= (1/3) sin (3x + 5) + C
Question 7 :
∫e5x + 2 dx
Solution :
∫e5x + 2 dx
Let t = 5x + 2
Differentiating with respect to x, we get
dt = 5(dx) + 0
dt = 5dx
dx = (1/5) dt
∫e5x + 2 dx = ∫et (1/5)dt
= (1/5) ∫et dt
= (1/5) et + C
Applying the value of t, we get
= (1/5) e5x + 2 + C
Question 8 :
∫dx/(2x - 1)
Solution :
∫dx/(2x - 1)
Let t = 2x - 1
dt = 2(dx) - 0
dt = 2dx
dx = (1/2) dt
By applying these assumptions, we get
∫dx/(2x - 1) = ∫(1/2)dt/t
= (1/2)∫(1/t) dt
= (1/2) log t + C
Applying the value of t, we get
= (1/2) log (2x - 1) + C
Question 9 :
∫dx/(1 + (5x)2)
Solution :
∫dx/(1 + (5x)2)
Let t = 5x
Differentiating with respect to x, we get
dt = 5(dx)
dx = (1/5) dt
∫dx/(1 + (5x)2) = ∫(1/5) dt/(1 + t2)
= (1/5) ∫1/(1 + t2) dt
∫1/(1 + t2) = tan-1(t) + C
= (1/5) tan-1(t) + C
Applying the value of t, we get
= (1/5) tan-1(5x) + C
Question 10 :
∫sec2(7x + 1) dx
Solution :
∫sec2(7x + 1) dx
Let t = 7x + 1
dt = 7(dx)
dx = (1/7) dt
∫sec2(7x + 1) dx = ∫sec2t (1/7) dt
= (1/7) ∫sec2t dt
= (1/7) tan t + C
= (1/7) tan (7x + 1) + C
Question 11 :
∫cos 5x cos x dx
Solution :
∫cos 5x cos x dx
cos A cos B = (1/2) [cos (A + B) + cos (A - B)]
cos 5x cos x = cos (5x + x) + cos (5x - x)
= cos 6x + cos 4x
∫cos 5x cos x dx = (1/2) ∫(cos 6x + cos 4x] dx
= (1/2) [(1/6) sin 6x + (1/4) sin 4x] + C
Distributing 1/2, we get
= [(1/12) sin 6x + (1/8) sin 4x] + C
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Nov 07, 25 04:31 AM
Nov 04, 25 07:33 AM
Oct 30, 25 08:57 AM