INTEGRATING PRODUCTS OF TANGENTS AND SECANTS

Consider the following integral :

Case 1 :

If q is a positive even positive integer, substitute 

u = tanθ

and evaluate the integral by substitution method.

Case 2 :

If both p and q are positive odd integers, substitute 

u = secθ

and evaluate the integral by substitution method.

You may have to use the following trigonometric identies.

sec2θ = 1 + tan2θ

tan2θ = sec2θ - 1

Evaluate each of the following integrals.

Example 1 :

Solution :

Let u = tanθ.

ᵈᵘ⁄dθ = sec2θ

du = sec2θdθ

Example 2 :

Solution :

Let u = tanθ.

ᵈᵘ⁄dθ = sec2θ

du = sec2θdθ

Example 3 :

Solution :

Let u = secθ.

ᵈᵘ⁄dθ = secθtanθ

du = secθtanθ

Example 4 :

Solution :

Let u = secθ.

ᵈᵘ⁄dθ = secθtanθ

du = secθtanθ

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 213)

    Jul 13, 25 09:51 AM

    digitalsatmath292.png
    Digital SAT Math Problems and Solutions (Part - 213)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 212)

    Jul 13, 25 09:32 AM

    digitalsatmath290.png
    Digital SAT Math Problems and Solutions (Part - 212)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 211)

    Jul 11, 25 08:34 AM

    digitalsatmath289.png
    Digital SAT Math Problems and Solutions (Part - 211)

    Read More