INTEGRATING PRODUCTS OF TANGENTS AND SECANTS

Consider the following integral :

Case 1 :

If q is a positive even positive integer, substitute 

u = tanθ

and evaluate the integral by substitution method.

Case 2 :

If both p and q are positive odd integers, substitute 

u = secθ

and evaluate the integral by substitution method.

You may have to use the following trigonometric identies.

sec2θ = 1 + tan2θ

tan2θ = sec2θ - 1

Evaluate each of the following integrals.

Example 1 :

Solution :

Let u = tanθ.

ᵈᵘ⁄dθ = sec2θ

du = sec2θdθ

Example 2 :

Solution :

Let u = tanθ.

ᵈᵘ⁄dθ = sec2θ

du = sec2θdθ

Example 3 :

Solution :

Let u = secθ.

ᵈᵘ⁄dθ = secθtanθ

du = secθtanθ

Example 4 :

Solution :

Let u = secθ.

ᵈᵘ⁄dθ = secθtanθ

du = secθtanθ

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Permutation Problems with Solutions

    May 08, 25 12:28 PM

    Permutation Problems with Solutions

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 159)

    May 08, 25 01:39 AM

    digitalsatmath200.png
    Digital SAT Math Problems and Solutions (Part - 159)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 158)

    May 06, 25 11:00 AM

    digitalsatmath198.png
    Digital SAT Math Problems and Solutions (Part - 158)

    Read More