INDEX FORM OF SURD

Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

The index form of a surd n√a is

a1/n

For example, 3√5 can be written in index form as shown below. 

3√5  = 51/3

What is surd ?

If β€˜a’ is a positive rational number and n is a positive integer such that n√a is an irrational number, then n√is called a β€˜surd’ or a β€˜radical’.

Order of a Surd

The general form of a surd is n√a is "√" is called a radical sign 'n' is called the order of the radical and 'a' is called radicand.

For example, 

3√5 is a surd of order '3'

5√10 is a surd of order '5'

In the following table, the index form, order and radicand of some surds are given.

Surd

Index form

Order

Radicand

√5

3√14

4√7

√50

51/2

141/3

71/4

501/2

2

3

4

2

5

14

7

50

Practice Questions

Question 1 :

Convert the following surd to index form.

√7 

Answer :

Surd  =  βˆš7

Index form  =  71/2

Question 2 :

Convert the following surd to index form.

4√8 

Answer :

Radical form  =  4√8 

Index form  =  81/4

Question 3 :

Convert the following surd to index form.

3√6 

Answer :

Radical form  =  3√6 

Index form  =  61/3

Question 4 :

Convert the following surd to index form.

8√

Answer :

Radical form  =  8√7 

Index form  =  71/8

Laws of Surds

Law 1 : 

n√a  =  a1/n

Law 2 : 

n√(ab)  =  n√a x n√b

Law 3 : 

n√(a/b)  =  n√a / n√b

Law 4 : 

(n√a)n  =  a

Law 5 : 

m√(n√a)  =  mn√a

Law 6 : 

(n√a)m  =  n√am

Laws of Indices

Law 1 : 

xm β‹… xn  =  xm+n

Law 2 : 

xm Γ· xn  =  xm-n

Law 3 : 

(xm)n  =  xmn

Law 4 : 

(xy)m  =  xm β‹… ym

Law 5 : 

(x / y)m  =  xm / ym

Law 6 : 

x-m  =  1 / xm

Law 7 : 

x0  =  1

Law 8 : 

x1  =  x

Law 9 : 

xm/n  =  y -----> x  =  yn/m

Law 10 : 

(x / y)-m  =  (y / x)m

Law 11 : 

ax  =  ay -----> x  =  y

Law 12 : 

xa  =  ya -----> x  =  y

Laws of Surds and Indices - Practice Problems

Problem 1 :

Simplify the following :

√5 β‹… βˆš18

Solution :

We have two radicals with same order. So, we can take the radical once and multiply the values inside the radicals. 

√5 β‹… βˆš18  =  βˆš(5 β‹… 18)

  =  βˆš(5 β‹… 3 β‹… 3 β‹… 2)

=  3 βˆš(5 β‹… 2)

=  3√10

Problem 2 :

Simplify the following :

3√35 Γ· 2√7

Solution :

We have two radicals with same order. So, we can take the radical once and divide the values inside the radicals. 

3√35 Γ· 2√7  =  (3/2) β‹… βˆš(35/7)

  =  (3/2) β‹… βˆš5

  =  3√5/2

Problem 3 :

Simplify the following :

4√8 Γ· 4√12

Solution :

We have two radicals with same order. So, we can take the radical once and divide the values inside the radicals. 

4√8 Γ· 4√12  =  4√(8/12)

=  4√(2/3)

=  4√2 / 4√3

Problem 4 :

Simplify the following :

xβ‹… x3

Solution :

We have the same base 'x' for both the terms. Because the terms are multiplied, we can take the base once and add the exponents. 

xβ‹… x3  =  x2+3

xβ‹… x3  =  x5

Problem 5 :

Simplify the following :

x7 Γ· x5

Solution :

We have the same base 'x' for both the terms. Because the terms are in division, we can take the base once and subtract the exponents. 

x7 Γ· x5  =  x7-5

x7 Γ· x5  =  x2

Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

Β©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 7)

    Nov 26, 25 09:03 AM

    Digital SAT Math Problems and Solutions (Part - 7)

    Read More

  2. Hcf and Lcm Word Problems

    Nov 21, 25 09:03 AM

    Hcf and Lcm Word Problems

    Read More

  3. 10 Hard SAT Math Questions (Part - 35)

    Nov 21, 25 07:36 AM

    digitalsatmath407.png
    10 Hard SAT Math Questions (Part - 35)

    Read More