INDEFINITE INTEGRAL USING PROPERTIES

About "Indefinite Integral Using Properties"

Indefinite Integral Using Properties :

Here we are going to see some example problems to understand how to solve indefinite integral using properties.

ex[ f(x) + f'(x) ] dx = ex f (x) + c

Indefinite Integral Using Properties - Examples

Question 1 :

Integrate the following with respect to x:

e(tan x + log sec x)

Solution :

  =  ∫e(tan x + log sec x) dx

Let f(x)  =  log sec x

Differentiating with respect to "x"

  f'(x)  =  (1/sec x) (sec x tan x) dx

  f'(x)  =  tan x

 ∫e(tan x + log sec x) dx  =   ∫e(f(x) + f'(x)) dx

   =  ef(x) + c 

   =  elog sec x + c 

Question 2 :

Integrate the following with respect to x:

e[(x - 1)/2x2]

Solution :

  =  ∫e[(x - 1)/2x2] dx

=  ∫ex [(x/2x2) - (1/2x2)] dx

=  ∫e[(1/2x) - (1/2x2)] dx

Let f(x)  =  1/2x then f'(x)  =  -1/2x2

Hence ∫e[(1/2x) - (1/2x2)] dx  is in the form e(f(x) + f'(x)) dx

  =  ef(x)

  =  e(1/2x)

  =  ex/2x

Question 3 :

Integrate the following with respect to x:

esec x (1 + tan x)

Solution :

  =  ∫esec x (1 + tan x) dx

  =  ∫ex (sec x  + sec x tan x) dx

Let f(x)  =  sec x, then f'(x)  =  sec x tan x

Hence e(sec x  + sec x tan x) dx is in the form e(f(x) + f'(x)) dx

  =  ef(x)

  =  esec x + c

Question 4 :

Integrate the following with respect to x:

e(2 + sin 2x) / (1 + cos 2x)

Solution :

  =  ∫ex [(2 + sin 2x) / (1 + cos 2x)] dx

sin 2x  =  2 sin x cos x

1 + cos 2x  =  2 cos2x

  =  ∫e[(2 + 2 sin x cos x) / 2 cos2x] dx

  =  ∫e[(2 / 2 cos2x)  + (2 sin x cos x / 2 cos2x)] dx

  =  ∫e[(1/cos2x)  + (sin x / cosx)] dx

  =  ∫e[sec2x  + tan x] dx  ------(1)

Let f(x)  =  tan x then f'(x)  =  sec2x

Hence (1) is in the form 

  =  ∫e[f(x) + f'(x)] dx

=  ef(x) + c

=  etan x + c

Question 5 :

Integrate the following with respect to x:

e^tan-1x [(1 + x + x2) / (1 + x2)]

Solution :

In order to compare the given question with the form e[f(x) + f'(x)] dx, we must have power "x" to the power of "e".

Let t = tan-1x

x  =  tan t

dt  =  1/1 + x2

e^tan-1x [(1 + x + x2) / (1 + x2)] dx

 =  ∫et (1 + tan t + tan2t) dt

Here 1 + tan2t  =  sec2t

 =  ∫et (tan t + sec2t) dt

f(x)  =  tan t then f'(x)  =  sec2t

=  et tan t + c

=  e^tan-1x tan (tan-1x) + c

=  x e^tan-1x + c

Question 6 :

Integrate the following with respect to x:

log x / (1 + log x)2

Solution :

=  ∫ [log x / (1 + log x)2] dx

Let t = log x ==> et  =  x

Differentiating with respect to "x", we get

et dt =  dx

=  ∫ [t/(1 + t)2et dt

=  ∫ e[(t + 1 - 1) /(1 + t)2] dt

=  ∫ e[((1 + t)/(1 + t)2) - 1/(1 + t)2] dt

=  ∫ e[1/(1 + t) - 1/(1 + t)2] dt

If f(t)  =  1/(1 + t) then f'(t)  =  -1/(1 + t)2

  =  ef(t) + c

  = e (1/(1 + t)) + c

  = x/(1 + log x) + c

After having gone through the stuff given above, we hope that the students would have understood, "Indefinite Integral Using Properties"

Apart from the stuff given in "Indefinite Integral Using Properties", if you need any other stuff in math, please use our google custom search here.

HTML Comment Box is loading comments...