INCENTER OF A TRIANGLE

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

The internal bisectors of the three vertical angle of a triangle are concurrent. This point of concurrency is called the incenter of the triangle. The incenter is deonoted by I.

How to Find the Coordinates of the Incenter of a Triangle

Let ABC be a triangle whose vertices are (x1, y1), (x2, y2) and (x3, y3).

Let AD, BE and CF be the internal bisectors of the angles of the ΔABC.

The incentre I of ΔABC is the point of intersection of AD, BE and CF.

Let 'a' be the length of the side opposite to the vertex A, 'b' be the length of the side opposite to the vertex B and 'c' be the length of the side opposite to the vertex C. 

That is,

AB  =  c, BC  =  a and CA  =  b

Then the formula given below can be used to find the incenter I of the triangle is given by

Example : 

Find the coordinates of the incenter of the triangle whose vertices are A(3, 1), B(0, 1) and C(-3, 1).

Solution :

The vertices of the triangle are

A(3, 1), B(0, 1) and C(-3, 1)

Let 'a' be the length of the side opposite to the vertex A, 'b' be the length of the side opposite to the vertex B and 'c' be the length of the side opposite to the vertex C. 

That is,

AB  =  c, BC  =  a and CA  =  b

Use distance formula to find the values of 'a', 'b' and 'c'.

a  =  BC  =  √[(0+3)2 + (1-1)2]  =  √9  =  3

b  =  AC  =  √[(3+3)2 + (1-1)2]  =  √36  =  6

c  =  AB  =  √[(3-0)2 + (1-1)2]  =  √9  =  3

Incenter I, of the triangle is given by

Here, 

(x1, y1)  =  (3, 1)

(x2, y2)  =  (0, 1)

(x3, y3)  =  (-3, 1)

a  =  3, b  =  6 and c  =  3

Then, 

ax1 + bx2 + cx3  =  3(3) + 6(0) + 3(-3)  =  0

ay1 + by2 + cy3  =  3(1) + 6(1) + 3(1)  =  12   

a + b + c  =  3 + 6 + 3  =  12

Substitute the above values in the formula. 

Incenter is

=  (0/12, 12/12)

=  (0, 1)

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge.png

Recent Articles

  1. US Common Core K-12 Curricum Algebra Solving Simple Equations

    Jan 06, 26 04:54 AM

    US Common Core K-12 Curricum Algebra Solving Simple Equations

    Read More

  2. 10 Hard SAT Math Questions (Part - 4)

    Jan 05, 26 06:56 PM

    digitalsatmath376.png
    10 Hard SAT Math Questions (Part - 4)

    Read More

  3. 10 Hard SAT Math Questions (Part - 3)

    Jan 05, 26 06:34 PM

    digitalsatmath378.png
    10 Hard SAT Math Questions (Part - 3)

    Read More