IB Math SL Trigonometric Identities Questions

Question 1 :

Show that 

tan2θ - sin2θ = tan2θsin2θ

Solution :

tan2θ - sin2θ = tan2θ - sin2θ(cos2θ/cos2θ)

= tan2θ - (sin2θ/cos2θ)cos2θ

= tan2θ - tan2θcos2θ

= tan2θ(1 - cos2θ)

= tan2θsin2θ

Question 2 :

Show that 

secθ - cosθ = tanθsinθ

Solution :

secθ - cosθ = 1/cosθ - cosθ

= (1 - cos2θ)/cosθ

= sin2θ/cosθ

= (sinθ/cosθ)sinθ

= tanθsinθ

Question 3 :

Show that

sin2x + cos2x - 1 = 2sinx(cosx - sinx)

Answer :

sin2x + cos2x - 1 :

= 2sinxcosx + cos2x - sin2x - sin2x - cos2x

= 2sinxcosx - sin2x - sin2x

= 2sinxcosx - 2sin2x

= 2sinx(cosx - sinx)

Question 4 :

Show that 

cos4θ - sin4θ = cos2θ

Solution :

cos4θ - sin4θ = (cos2θ)2 (sin2θ)2

Using the identity a2 - b2 = (a + b)(a - b),  

= (cos2θ + sin2θ)(cos2θ - sin2θ)

= (1)(cos2θ)

= cos2θ

Question 5 :

Show that 

sin4θ + cos4θ = 1 - 2sin2θcos2θ

Solution :

sin4θ + cos4θ = (sin2θ)2 (cos2θ)2

Using the identity a2 + b2 = (a + b)2 - 2ab,  

= (sin2θ + cos2θ)2 - 2sin2θcos2θ

= 12 - 2sin2θcos2θ

= 1 - 2sin2θcos2θ

Question 6 :

Show that the equation 2cos2x + 5sinx = 4 may be written in the form

2sin2x - 5sinx + 2 = 0

Answer :

2cos2x + 5sinx = 4

2(1 - sin2x) + 5sinx = 4

2 - 2sin2x + 5sinx = 4

-2sin2x + 5sinx + 2 = 4

Multiply both sides by -1.

-1(-2sin2x + 5sinx + 2) = -1(4)

2sin2x - 5sinx - 2 = -4

Add 4 to both sides.

2sin2x - 5sinx + 2 = 0

Question 7 :

Show that 

Answer :

Question 8 :

Show that 

Answer :

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 271)

    Aug 31, 25 07:25 AM

    Digital SAT Math Problems and Solutions (Part - 271)

    Read More

  2. Digital SAT Math Problems and Solutions (part - 270)

    Aug 30, 25 04:19 AM

    digitalsatmath378.png
    Digital SAT Math Problems and Solutions (part - 270)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 269)

    Aug 28, 25 09:59 PM

    digitalsatmath377.png
    Digital SAT Math Problems and Solutions (Part - 269)

    Read More