HOW TO WRITE A DECIMAL IN EXPANDED FORM

Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

To write a decimal in expanded form, we have to break down down each digit according to its place value. We can start with the whole number portion, identifying the ten thusands, thousands, hundreds, tens, ones places. Then, move on to the tenths, hundredths, and thousandths and ten thousandths places.

decimalplacevalue

Write the following decimals in expanded form :

Example 1 :

23.87

Solution :

= 23.87

Multiply each digit of 23.87 by its corresponding place value.

= 2x10 + 3x1 + 8x¹⁄₁₀ + 7x¹⁄₁₀₀

= 20 + 3 + ⁸⁄₁₀ + ⁷⁄₁₀₀

= 20 + 3 + 0.8 + 0.07

Example 2 :

7.8

Solution :

= 7.8

= 7x1 + 8x¹⁄₁₀

= 7 + ⁸⁄₁₀

= 7 + 0.8

Example 3 :

5.206

Solution :

= 5.206 

= 5x1 + 2x¹⁄₁₀ + 0x¹⁄₁₀₀ + 6x¹⁄₁₀₀₀

= 5 + ²⁄₁₀ + 0 + βΆβ„₁₀₀₀

= 5 + 0.2 + 0.006

Example 4 :

1025.3

Solution :

= 1025.3

 = 1x1000 + 0x100 + 2x10 + 5x1 + 3x¹⁄₁₀

= 1000 + 0 + 20 + 5 + Β³β„₁₀

= 1000 + 0 + 20 + 5 + 0.3

Example 5 :

5.36

Solution :

= 5.36

 = 5x1 + 3x¹⁄₁₀ + 6x¹⁄₁₀₀

= 5 + ³⁄₁₀ + βΆβ„₁₀₀

= 5 + 0.3 + 0.06

Example 6 :

0.389

Solution :

= 0.389 

= 3x¹⁄₁₀ + 8x¹⁄₁₀₀ + 9x¹⁄₁₀₀₀

= ³⁄₁₀ + ⁸⁄₁₀₀ + βΉβ„₁₀₀₀

= 0.3 + 0.08 + 0.009

Example 7 :

0.0746

Solution :

= 0.0746 

= 7x¹⁄₁₀₀ + 4x¹⁄₁₀₀₀ + 6x¹⁄₁₀₀₀₀

⁷⁄₁₀₀ + ⁴⁄₁₀₀₀ + βΆβ„₁₀₀₀₀

= 0.07 + 0.004 + 0.0006

Example 8 :

0.000043

Solution :

= 0.000043

 = 4x¹⁄₁₀₀₀₀₀ + 3x¹⁄₁₀₀₀₀₀₀

⁴⁄₁₀₀₀₀₀ + ³⁄₁₀₀₀₀₀₀

= 0.00004 + 0.000003

Example 9 :

2.4358 x 102

Solution :

= 2.4358 x 102

= 243.58

= 2x100 + 4x10 + 3x1 + 5x¹⁄₁₀ + 8x¹⁄₁₀₀

= 200 + 40 + 3 + ⁡⁄₁₀ + ⁸⁄₁₀₀

= 200 + 40 + 3 + 0.5 + 0.08

Example 10 :

9.57 x 10-4

Solution :

= 9.57 x 10-4

= 0.000957

= 9x¹⁄₁₀₀₀₀ + 5x¹⁄₁₀₀₀₀₀ + 7x¹⁄₁₀₀₀₀₀₀

= ⁹⁄₁₀₀₀₀ + ⁡⁄₁₀₀₀₀₀ + ⁷⁄₁₀₀₀₀₀₀

= 0.0009 + 0.00005 + 0.000007

Example 11 :

(1.78 x 102) x (2.54 x 101)

Solution :

= (1.78 x 102) x (2.54 x 101

= (1.78 x 2.54) x (102 x 101)

= 4.5212 x 102 + 1

= 4.5212 x 103

= 4521.2

= 4x1000 + 5x100 + 2x10 + 1x1 + 2x¹⁄₁₀

= 4000 + 500 + 20 + 1 + ²⁄₁₀

= 4000 + 500 + 20 + 0.2

Example 12 :

(2.9375 x 10-2Γ· (1.25 x 101)

Solution :

= (2.9375 x 10-2Γ· (1.25 x 101)

= (2.9375 Γ· 1.25) x (10-2 Γ· 101)

= 2.35 x 10-2-1

= 2.35 x 10-3

= 0.00235

= 2x¹⁄₁₀₀₀ + 3x¹⁄₁₀₀₀₀ + 5x¹⁄₁₀₀₀₀₀

= ²⁄₁₀₀₀ + ³⁄₁₀₀₀₀ + ⁡⁄₁₀₀₀₀₀

= 0.002 + 0.0003 + 0.00005

Example 13 :

(1.5 x 10-2) + (2.3 x 10-2)

Solution :

= (1.5 x 10-2) + (2.3 x 10-2)

Factor 10-2.

= (1.5 + 2.3) x 10-2

= 3.8 x 10-2

= 0.038

= 3x¹⁄₁₀₀ + 8x¹⁄₁₀₀₀

= ³⁄₁₀₀ + ⁸⁄₁₀₀₀

= 0.03 + 0.008

Example 14 :

(2.9 x 10-3) + (5.6 x 10-1)

Solution :

= (2.9 x 10-3) + (5.6 x 10-2)

= (2.9 x 10-3) + (56.0 x 10-3)

Factor 10-3.

= (2.9 + 56.0) x 10-3

= 58.9 x 10-3

= 0.0589

= 5x¹⁄₁₀₀ + 8x¹⁄₁₀₀₀ + 9x¹⁄₁₀₀₀₀

= ⁡⁄₁₀₀ + ⁸⁄₁₀₀₀ + ⁹⁄₁₀₀₀₀

= 0.05 + 0.008 + 0.0009

Example 15 :

(8.4 x 10-3) - (1.6 x 10-3)

Solution :

= (8.4 x 10-3) - (1.6 x 10-3)

Factor 10-3.

= (8.4 - 1.6) x 10-3

= 6.8 x 10-3

= 0.0068

= 6x¹⁄₁₀₀₀ + 8x¹⁄₁₀₀₀₀

= ⁢⁄₁₀₀₀ + ⁸⁄₁₀₀₀₀

= 0.006 + 0.0008

Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

Β©All rights reserved. onlinemath4all.com

Recent Articles

  1. Quantitative Reasoning Questions and Answers

    Dec 14, 25 06:42 AM

    Quantitative Reasoning Questions and Answers

    Read More

  2. Specifying Units of Measure

    Dec 14, 25 06:38 AM

    Specifying Units of Measure

    Read More

  3. Coin Tossing Probability

    Dec 13, 25 10:11 AM

    Coin Tossing Probability - Concept - Sample Space - Formula - Solved Problems

    Read More