SIMPLIFYING RADICAL EXPRESSIONS

Subscribe to our โ–ถ๏ธ YouTube channel ๐Ÿ”ด for the latest videos, updates, and tips.

The following steps will be useful to simplify any radical expressions. 

Step 1 :

Decompose the number inside the radical into prime factors. 

Step 2 :

If you have square root (โˆš), you have to take one term out of the square root for every two same terms multiplied inside the radical. 

Step 3 :

If you have cube root (3โˆš), you have to take one term out of cube root for every three same terms multiplied inside the radical.

Step 4 :

If you have fourth root (4โˆš), you have to take one term out of fourth root for every four same terms multiplied inside the radical.

Step 5 :

Combine the radical terms using mathematical operations. 

Example : 

โˆš18 + โˆš8  =  โˆš(3 โ‹… 3 โ‹… 2) + โˆš(2 โ‹… 2 โ‹… 2)

 โˆš18 + โˆš8  =  3โˆš2 + 2โˆš2

 โˆš18 + โˆš8  =  5โˆš2

Solved Examples 

Example 1 : 

Simplify the radical expression : 

โˆš169 + โˆš121

Solution : 

Decompose 169 and 121 into prime factors using synthetic division. 

โˆš169  =  โˆš(13 โ‹… 13)

โˆš169  =  13

โˆš121  =  โˆš(11 โ‹… 11)

โˆš121  =  11

So, we have

โˆš169 + โˆš121  =  13 + 11

โˆš169 + โˆš121  =  24

Example 2 : 

Simplify the radical expression : 

โˆš20 + โˆš320

Solution : 

Decompose 20 and 320 into prime factors using synthetic division. 

โˆš20  =  โˆš(2 โ‹… 2 โ‹… 5)

โˆš20  =  2โˆš5

โˆš320  =  โˆš(2 โ‹… 2 โ‹… 2 โ‹… 2 โ‹… 2 โ‹… 2 โ‹… 5)

โˆš320  =  2 โ‹… 2 โ‹… 2 โ‹… โˆš5

โˆš320  =  8โˆš5

So, we have

โˆš20 + โˆš320  =  2โˆš5 + 8โˆš5

โˆš20 + โˆš320  =  10โˆš5

Example 3 : 

Simplify the radical expression : 

โˆš117 - โˆš52

Solution : 

Decompose 117 and 52 into prime factors using synthetic division. 

โˆš117  =  โˆš(3 โ‹… 3 โ‹… 13)

โˆš117  =  3โˆš13

โˆš52  =  โˆš(2 โ‹… 2 โ‹… 13)

โˆš52  =  2โˆš13

So, we have

โˆš117 - โˆš52  =  3โˆš13 - 2โˆš13

โˆš117 + โˆš52  =  โˆš13

Example 4 : 

Simplify the radical expression : 

โˆš243 - 5โˆš12 + โˆš27 

Solution : 

Decompose 243, 12 and 27 into prime factors using synthetic division. 

โˆš243  =  โˆš(3 โ‹… 3 โ‹… 3 โ‹… 3 โ‹… 3)  =  9โˆš3

โˆš12  =  โˆš(2 โ‹… 2 โ‹… 3)  =  2โˆš3

โˆš27  =  โˆš(3 โ‹… 3 โ‹… 3)  =  3โˆš3

So, we have

โˆš243 - 5โˆš12 + โˆš27  =  9โˆš3 - 5(2โˆš3) + 3โˆš3

Simplify.

โˆš243 - 5โˆš12 + โˆš27  =  9โˆš3 - 10โˆš3 + 3โˆš3

โˆš243 - 5โˆš12 + โˆš27  =  2โˆš3

Example 5 : 

Simplify the radical expression : 

-โˆš147 - โˆš243 

Solution : 

Decompose 147 and 243 into prime factors using synthetic division. 

โˆš147  =  โˆš(7 โ‹… 7 โ‹… 3)  =  7โˆš3

โˆš243  =  โˆš(3 โ‹… 3 โ‹… 3 โ‹… 3 โ‹… 3)  =  9โˆš3

So, we have

-โˆš147 - โˆš243  =  -7โˆš3 - 9โˆš3

-โˆš147 - โˆš243  =  -16โˆš3

Example 6 : 

Simplify the radical expression : 

(โˆš13)(โˆš26)

Solution : 

Decompose 13 and 26 into prime factors. 

13 is a prime number. So, it can't be decomposed anymore.

โˆš26  =  โˆš(2 โ‹… 13)  =  โˆš2 โ‹… โˆš13

So, we have

(โˆš13)(โˆš26)  =  (โˆš13)(โˆš2 โ‹… โˆš13)

(โˆš13)(โˆš26)  =  (โˆš13 โ‹… โˆš13)โˆš2

(โˆš13)(โˆš26)  =  13โˆš2

Example 7 : 

Simplify the radical expression : 

(3โˆš14)(โˆš35)

Solution : 

Decompose 14 and 35 into prime factors.

โˆš14  =  โˆš(2 โ‹… 7)  =  โˆš2 โ‹… โˆš7

โˆš35  =  โˆš(5 โ‹… 7)  =  โˆš5 โ‹… โˆš7

So, we have

(3โˆš14)(โˆš35)  =  3( โˆš2 โ‹… โˆš7)(โˆš5 โ‹… โˆš7)

(3โˆš14)(โˆš35)  =  3(โˆš7 โ‹… โˆš7)(โˆš2 โ‹… โˆš5)

(3โˆš14)(โˆš35)  =  3(7)โˆš(2 โ‹… 5)

(3โˆš14)(โˆš35)  =  21โˆš10

Example 8 : 

Simplify the radical expression : 

(8โˆš117) รท (2โˆš52)

Solution : 

Decompose 117 and 52 into prime factors using synthetic division.

โˆš117  =  โˆš(3 โ‹… 3 โ‹… 13)

โˆš117  =  3โˆš13

โˆš52  =  โˆš(2 โ‹… 2 โ‹… 13)

โˆš52  =  2โˆš13

(8โˆš117) รท (2โˆš52)  =  8(3โˆš13) รท 2(2โˆš13)

(8โˆš117) รท (2โˆš52)  =  24โˆš13 รท 4โˆš13

(8โˆš117) รท (2โˆš52)  =  24โˆš13 / 4โˆš13

(8โˆš117) รท (2โˆš52)  =  6

Example 9 : 

Simplify the radical expression : 

(8โˆš3)2

Solution :

(8โˆš3)=  8โˆš3 โ‹… 8โˆš3

(8โˆš3)2  =  (โ‹… 8)(โˆš3 โ‹… โˆš3)

(8โˆš3)2  =  (64)(3)

(8โˆš3)2  =  192

Example 10 : 

Simplify the radical expression : 

(โˆš2)3 + โˆš8

  

Solution :

(โˆš2)3 + โˆš8  =  (โˆš2 โ‹… โˆš2 โ‹… โˆš2) + โˆš(2โ‹… โ‹… 2)

(โˆš2)3 + โˆš8  =  (โ‹… โˆš2) + 2โˆš2

(โˆš2)3 + โˆš8  2โˆš2 + 2โˆš2

(โˆš2)3 + โˆš8  =  4โˆš2

Example 11 :

Simplify : 

4โˆš(x4/16)

Solution :

4โˆš(x4/16)  =  4โˆš(x4) / 4โˆš16

4โˆš(x4/16)  =  4โˆš(x โ‹… x โ‹… x โ‹… x) / 4โˆš(2 โ‹… 2 โ‹… 2 โ‹… 2)

4โˆš(x4/16)  =  x / 2

Example 12 :

Simplify : 

3โˆš(125p6q3)

Solution :

3โˆš(125p6q3)  =  3โˆš(5 โ‹… 5 โ‹… 5 โ‹… p2 โ‹… p2 โ‹… p2 โ‹… q โ‹… q โ‹… q)

3โˆš(125p6q3)  =  5p2q

Example 13 :

If โˆš(0.9 โ‹… 0.09 โ‹… x) = 0.9 โ‹… 0.9โˆš3, then the value of x/3 is :

Solution :

โˆš(0.9 โ‹… 0.09 โ‹… x) = 0.9 โ‹… 0.9โˆš3

Squaring on both sides

(โˆš(0.9 โ‹… 0.09 โ‹… x))2 = (0.9 โ‹… 0.9)2 (โˆš3)2

(0.9 โ‹… 0.09 โ‹… x) = (0.9 โ‹… 0.9)2 3

x/3 =  (0.9 โ‹… 0.9)2 / (0.9 โ‹… 0.09)

x/3 = 0.81/(0.9 โ‹… 0.09)

x/3 = 10

Example 14 :

Find the value of (โˆš1521/11) โ‹… (11/โˆš196)

Solution :

= (โˆš1521/11) โ‹… (11/โˆš196)

By cancelling the numerator and denominator, we get

= (โˆš1521/โˆš196)

= โˆš(39โ‹…39)/โˆš(14 โ‹… 14)

= 39/14

Example 15 :

Find the value of [ โˆš(7โˆš7โˆš7โˆš7) ]

Solution :

=  [ โˆš(7โˆš(7โˆš(7โˆš(7))) ]

Here inside a square root, we have square root of 7 as four times.

= [7 [7 [7 (7)1/2]^1/2]^1/2]^1/2

= [7 [7 [(7)3/2]^1/2]^1/2]^1/2

= [7 [7 (7)3/4]^1/2]^1/2

= [7 [71 + 3/4]^1/2]^1/2

= [7 [77/4]^1/2]^1/2

= [7 โ‹… 77/8]]^1/2

= [7 1 + 7/8]^1/2

= [7 15/8]^1/2

= 7 15/16

Example 16 :

โˆšx = โˆš12 + โˆš147, then x is

Solution :

โˆšx = โˆš12 + โˆš147

Doing possible simplification, we get

โˆšx = โˆš(2โ‹…2โ‹…3) + โˆš(3โ‹…7โ‹…7)

โˆšx = 2โˆš3 + 7โˆš3

โˆšx = 9โˆš3

By comparing the corresponding terms, we get

โˆšx = โˆš3

x = 3

So, the value of x is 3.

Example 17 :

Find the value of โˆš2304 + โˆš23.04 + โˆš0.2304

Solution :

= โˆš2304 + โˆš23.04 + โˆš0.2304

โˆš2304 = โˆš(48 โ‹… 48)

= 48

โˆš23.04 = โˆš2304/100

= โˆš(48 โ‹… 48)/(10 โ‹… 10)

= 48/10

= 4.8

 โˆš0.2304 = โˆš(2304/10000)

= โˆš(48โ‹…48)/(100โ‹…100)

= 48/100

= 0.48

 โˆš2304 + โˆš23.04 + โˆš0.2304 = 48 + 4.8 + 0.48

= 53.28

Subscribe to our โ–ถ๏ธ YouTube channel ๐Ÿ”ด for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

ยฉAll rights reserved. onlinemath4all.com

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 36)

    Nov 28, 25 09:55 AM

    digitalsatmath409.png
    10 Hard SAT Math Questions (Part - 36)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 7)

    Nov 26, 25 09:03 AM

    Digital SAT Math Problems and Solutions (Part - 7)

    Read More

  3. Hcf and Lcm Word Problems

    Nov 21, 25 09:03 AM

    Hcf and Lcm Word Problems

    Read More