# HOW TO REPRESENT DISPLACEMENT GRAPHICALLY IN VECTOR

If we want represent displacement in a graph, first we have to draw the coordinate axis and mark the directions.

In the right corner - Mark the direction (East)

In the left corner - Mark the direction (West)

In the top corner - Mark the direction (North)

In the bottom corner - Mark the direction (South)

## Key Concept

1. North of west means, it travels from west to north. To represent the particular angle, move the horizontal line to the north side clockwise.

2. West of north means, it travels from north to west. To represent the particular angle, move the vertical line to the west side anticlockwise.

Example 1 :

Represent graphically the displacement of

45 cm 30° north of east

Solution :

To represent the above statement graphically, we have to mark the coordinate axis and write the directions.

North of east means, it travels from east to north. To represent the particular angle, move the horizontal line to the north side anticlockwise.

Example 2 :

Represent graphically the displacement of

80 km  60° south of west

Solution :

To represent the above statement graphically, we have to mark the coordinate axis and write the directions.

South of west means, it travels from west to south To represent the particular angle, move the horizontal line to the south side anticlockwise.

Example 3 :

Prove that the relation R defined on the set V of all vectors by ‘ a vector R b vector if a vector = b vector is an equivalence relation on V.

Solution :

In order to prove the given is in equivalence relation, we have to prove there exists, reflexive, symmetric and transitive.

R is said to be reflexive if a is related to a for all a ∈ S

Reflexive :

The given is reflexive, because in (a, b) ∈ S a and b are equal.

So, we may write it as (a, a) and is it reflexive.

Symmetric :

There exists symmetric relation, if (a, b)  ∈ S, then (b, a) also exists in this relation. (Since they are equal).

Transitive :

In a R b (a = b)

In b R c (b = c)

From this, we may decide that a = c.

Hence it is transitive.

Example 4 :

Let a vector and b vector be the position vectors of the points A and B. Prove that the position vectors of the points which trisects the line segment AB are (a vector + 2b vector)/3 and (b vector + 2a vector)/3.

Solution :

OA  =  a vector, OB  =  b vector

The point P divides the line segment joining the points AB in the ratio 1 : 2 (internally)

=  (n a  vector + m b vector)/ (n + m)

=  (nOB + mOA)/(n + m)

=  [1(a vector) + 2(b vector)]/ (1 + 2)

=  (a vector + 2 b vector)/3

The point Q divides the line segment joining the points AB in the ratio 2 : 1 (internally)

=  (nOB + mOA)/(n + m)

=  [2(a vector) + 1(b vector)]/ (2 + 1)

=  (2a vector + b vector)/3

Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

You can also visit the following web pages on different stuff in math.

WORD PROBLEMS

Word problems on simple equations

Word problems on linear equations

Algebra word problems

Word problems on trains

Area and perimeter word problems

Word problems on direct variation and inverse variation

Word problems on unit price

Word problems on unit rate

Word problems on comparing rates

Converting customary units word problems

Converting metric units word problems

Word problems on simple interest

Word problems on compound interest

Word problems on types of angles

Complementary and supplementary angles word problems

Double facts word problems

Trigonometry word problems

Percentage word problems

Profit and loss word problems

Markup and markdown word problems

Decimal word problems

Word problems on fractions

Word problems on mixed fractrions

One step equation word problems

Linear inequalities word problems

Ratio and proportion word problems

Time and work word problems

Word problems on sets and venn diagrams

Word problems on ages

Pythagorean theorem word problems

Percent of a number word problems

Word problems on constant speed

Word problems on average speed

Word problems on sum of the angles of a triangle is 180 degree

OTHER TOPICS

Profit and loss shortcuts

Percentage shortcuts

Times table shortcuts

Time, speed and distance shortcuts

Ratio and proportion shortcuts

Domain and range of rational functions

Domain and range of rational functions with holes

Graphing rational functions

Graphing rational functions with holes

Converting repeating decimals in to fractions

Decimal representation of rational numbers

Finding square root using long division

L.C.M method to solve time and work problems

Translating the word problems in to algebraic expressions

Remainder when 2 power 256 is divided by 17

Remainder when 17 power 23 is divided by 16

Sum of all three digit numbers divisible by 6

Sum of all three digit numbers divisible by 7

Sum of all three digit numbers divisible by 8

Sum of all three digit numbers formed using 1, 3, 4

Sum of all three four digit numbers formed with non zero digits

Sum of all three four digit numbers formed using 0, 1, 2, 3

Sum of all three four digit numbers formed using 1, 2, 5, 6