HOW TO PROVE THE GIVEN VERTICES FORM A RIGHT TRIANGLE USING SLOPE

Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

The following steps would be useful to prove that given vertices form a right triangle. 

Step 1 :

Use slope formula to find the slope of each side of the triangle.

Slope = ⁽ʸ2 β» ΚΈ1⁾⁄₍ₓ2 β‚‹ β‚“1β‚Ž

Step 2 :

Check whether the product of slopes of any two sides is equal to -1.

If the product of slopes of any two sides is equal to -1, then those two sides are perpendicular and the angle between them is 90Β°. Then the given vertices form a right triangle, other wise they don't. 

In each case, show that the given vertices form a right triangle and check whether they satisfy Pythagorean Theorem.

Example 1 :

A(1, -4), B(2, -3), C(4,-7)

Solution :

Slope of AB = β½β»Β³ ⁺ ⁴⁾⁄₍₂ β‚‹ β‚β‚Ž

¹⁄₁

= 1

Slope of BC = β½β»β· ⁺ ³⁾⁄₍₄ β‚‹ β‚‚β‚Ž

= -⁴⁄₂

= -2

Slope of AC = ⁽⁻⁷ ⁺ ⁴⁾⁄₍₄ β‚‹ β‚β‚Ž

= -³⁄₃

= -1

Slope of AB x Slope of AC = (-1)(1)

= -1

AB is perpendicular to AC, βˆ A = 90Β°.

Using the distance formula d = √[(x2 - x1)2 + (y2 - y1)2], find the length of each side of the triangle. 

Then, Check Pythagorean Theorem for the lengths. 

That is, square of the larger side has to be equal to sum of the squares of other two sides. 

The vertices are A(1, -4), B(2, -3) and C(4,-7). 

AB = √[(x2 - x1)2 + (y2 - y1)2]

Substitute (x1, y1) = (1, -4) and (x2, y2) = (2, -3).

AB = βˆš[(2 - 1)2 + (-3 + 4)2]

√[12 + 12]

= βˆš[1 + 1]

= βˆš2

AB2 = 2

BC = √[(4 - 2)2 + (-7 + 3)2] = βˆš20

BC2 = 20

AC = √[(4 - 1)2 + (-7 + 4)2] = βˆš18

AC2 = 18

20 = 2 + 18 ----> BC2 = AB2 + AC2

The points A, B and C satisfy Pythagorean theorem.

Therefore, the points A, B and C form a right triangle.

Example 2 : 

L(0, 5), M(9, 12), N(3, 14)

Solution :

Slope of LM = β½ΒΉΒ² ⁻ ⁡⁾⁄₍₉ β‚‹ β‚€β‚Ž

= ⁷⁄₉

Slope of MN = ⁽¹⁴ ⁻ ¹²⁾⁄₍₃ β‚‹ β‚‰β‚Ž

= ²⁄₋₆

= -β…“

Slope of LN = ⁽¹⁴ ⁻ ⁡⁾⁄₍₃ β‚‹ β‚€β‚Ž

= ⁹⁄₃

= 3

Slope of MN x Slope of LN = (-β…“)(3) 

= -1

MN is perpendicular to LN, βˆ N = 90Β°.

Using the distance formula d = √[(x2 - x1)2 + (y2 - y1)2], find the length of each side of the triangle. 

Then, Check Pythagorean Theorem for the lengths. 

That is, square of the larger side has to be equal to sum of the squares of other two sides. 

LM = √[(x2 - x1)2 + (y2 - y1)2]

Substitute (x1, y1) = (0, 5) and (x2, y2) = (9, 12).

LM = βˆš[(9 - 0)2 + (12 - 5)2]

= βˆš[92 + 72]

= βˆš[81 + 49]

= βˆš130

LM2 = 130

MN = √[(3 - 9)2 + (14 - 12)2] = βˆš40

MN2 = 40

LN = √[(3 - 0)2 + (14 - 5)2] = βˆš90

LN2 = 90

130 = 40 + 90 ----> LM2 = MN2 + LN2

The points L, M and N satisfy Pythagorean theorem.

Therefore, the points L, M and N form a right triangle.

Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

Β©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 7)

    Nov 26, 25 09:03 AM

    Digital SAT Math Problems and Solutions (Part - 7)

    Read More

  2. Hcf and Lcm Word Problems

    Nov 21, 25 09:03 AM

    Hcf and Lcm Word Problems

    Read More

  3. 10 Hard SAT Math Questions (Part - 35)

    Nov 21, 25 07:36 AM

    digitalsatmath407.png
    10 Hard SAT Math Questions (Part - 35)

    Read More