HOW TO FIND THE VALUE OF N IN GEOMETRIC PROGRESSION

How to Find the Value of n in Geometric Progression ?

In this section, we will learn how to find the value of n in the geometric progression.

Example 1 :

If the geometric sequences

162, 54, 18,......... and 2/81, 2/27, 2/9,..........

have their nth term equal, find the value of n.

Solution :

Let us find nth term of the given sequences one by one.

162, 54, 18,.........

a  =  162   r  =  54/162 ==> r = 1/3 

t =  a r(n-1)

  = 1 62 (1/3)(n-1)

  =  162 (3-1)(n-1)

  =  162 (3-n+1)  ------ (1) 

2/81, 2/27, 2/9,..........

a  =  2/81, r  =  (2/27) / (2/81)

r  =  (2/27)  (81/2)

r = 3

tn = a r(n-1)

  =  (2/81)  (3)(n-1)  ------ (2)

tn  =  t

162 (3-n+1)  =  (2/81) x 3n-1

[(162  81)/2] (3-n + 1)  =  3n-1

(81  81)(3-n + 1)  =  3n-1

(3⁴ x 3⁴)(3-n + 1)  =  3n-1

(3⁸)(3-n + 1)  =  3n-1

3-n + 9  =  3n-1

-n + 9  =  n - 1

2n  =  10

n  =  5

Therefore the 5th term of the sequence are equal.

Find the First Three Terms of a Geometric Sequence When Sum of Three Terms is Given

Example 2 :

The sum of three terms of a geometric sequence is 39/10 and their product is 1. Find the common ratio and the terms.

Solution :

Let the first three terms are a/r, a, ar

Sum of three terms  =  39/10

Product of three terms  =  1

(a/r) + a + a r  =  39/10   ------ (1)

(a/r)  a  a r = 1

a3  =  13

 a  =  1

By applying the value of a in the first equation, we get

(1/r) + 1 + 1 r  =  39/10

 (1 + r + r²)/r  =  39/10

10(1 + r + r²)  =  39 r

10r² + 10r - 39r + 10  =  0

10 r² - 29 r + 10  =  0

(2r - 5)(5r - 2)  =  0

2r - 5  =  0

2r  =  5

r  =  5/2

If a  =  1 and r  =  5/2

a/r  =  1/(5/2)

a/r  =  2/5

a  =  1

ar  =  1(5/2)

ar  =  5/2

5r - 2  =  0

5r  =  2

r  =  2/5

If a  =  1 and r  =  2/5

a/r  =  1/(2/5)

a/r  =  5/2

a  =  1

ar  =  1(2/5)

ar  =  2/5

Therefore the three terms are

2/5, 1, 5/2 or 5/2, 1, 2/5.

After having gone through the stuff given above, we hope that the students would have understood how to find the value of n in geometric progression.

Apart from the stuff given in this section, if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Angular Speed and Linear Speed

    Dec 07, 22 05:15 AM

    Angular Speed and Linear Speed - Concepts - Formulas - Examples

    Read More

  2. Linear Speed Formula

    Dec 07, 22 05:13 AM

    Linear Speed Formula and Examples

    Read More

  3. Angular Speed and Linear Speed Worksheet

    Dec 07, 22 05:08 AM

    Angular Speed and Linear Speed Worksheet

    Read More