HOW TO FIND THE POINTS WHERE TANGENT LINE IS HORIZONTAL

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

The slope of an horizontal line is always zero. Let us consider the curve given by the function y = f(x). To find the slope of a tangent line to y = f(x), we have to find the first derivative of the function y = f(x), that is ᵈʸ⁄d.

ᵈʸ⁄d represents the slope of a tangent line to the curve y = f(x).

If the tangent line is horizontal, then its slope is equal to zero.

ᵈʸ⁄d = 0

To find the point at where the tangent line is horizontal, equate the slope ᵈʸ⁄d to zero and solve for x. Substitute the value of x into y = f(x) and find the value of y. Write the point (x, y) at where the tangent line to the curve is horizontal.

For each of the following curves, find the point at where the tangent line drawn to the curve is horizontal.

Example 1 :

y = x2 - 4x - 12 

Solution :

y = x2 - 4x - 12 ----(1)

Slope of the tangent line :

ᵈʸ⁄d = 2x - 4

Since the tangent line is horizontal, slope is equal to zero.

ᵈʸ⁄d = 0

2x - 4 = 0

2x = 4

x = 2

Substitute x = 2 into (1).

y = 22 - 4(2) - 12

y = 4 - 8 - 12

y = -16

(x, y) = (2, -16)

Example 2 :

y = x3 - 18x + 5 

Solution :

y = x3 - 18x + 5 ----(1)

Slope of the tangent line :

ᵈʸ⁄d = 3x2 - 18

Since the tangent line is horizontal, slope is equal to zero.

ᵈʸ⁄d = 0

3x2 - 18 = 0

3x2 = 18

x2 = 9

x = ±√9

x = ±3

x = -3  or  x = 3

Substitute x = -3 and x = 3 into (1).

When x = -3,

y = x3 - 18x + 5

y = (-3)3 - 18(-3) + 5

y = -27 + 54 + 5

y = 32

When x = 3,

y = x3 - 18x + 5

y = 33 - 18(3) + 5

y = 27 - 54 + 5

y = -22

(x, y) = (-3, 32) and (3, -22)

Example 3 :

y = x4 - 2x2 + 3

Solution :

y = x4 - 2x2 + 3 ----(1)

Slope of the tangent line :

ᵈʸ⁄d = 4x3 - 4x

Since the tangent line is horizontal, slope is equal to zero.

ᵈʸ⁄d = 0

4x3 - 4x = 0

4x(x2 - 1) = 0

4x(x2 - 12) = 0

4x(x + 1)(x - 1) = 0

4x = 0  or  x + 1 = 0  or  x - 1 = 0

x = 0  or  x = -1  or  x = 1

Substitute x = 0, x = -1 and x = 1 into (1).

When x = 0,

y = 0 - 0 + 3

y = 3

When x = -1,

y = (-1)4 - 2(-1)2+ 3

y = 1 - 2(1) + 3

y = 1 - 2 + 3

y = 2

When x = 1,

y = (1)4 - 2(1)2+ 3

y = 1 - 2(1) + 3

y = 1 - 2 + 3

y = 2

(x, y) = (0, 3), (-1, 2) and (1, 2)

Example 4 :

y = x + sinx,  0 ≤ x ≤ 2π

Solution :

y = x + sinx ----(1)

Slope of the tangent line :

ᵈʸ⁄d = 1 + cosx

Since the tangent line is horizontal, slope is equal to zero.

ᵈʸ⁄d = 0

1 + cosx = 0

cosx = -1

x = π ∈ ≤ x ≤ 2π

Substitute x = π into (1).

y = π + sinπ

y = π + 0

y = π

(x, y) = (π, π)

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge1.png

Recent Articles

  1. 10 Tricky SAT Math Questions with Answers

    Feb 04, 26 07:08 PM

    10 Tricky SAT Math Questions with Answers

    Read More

  2. The 10 Hardest SAT Math Questions

    Feb 04, 26 09:43 AM

    digitalsatmath426.png
    The 10 Hardest SAT Math Questions

    Read More

  3. The 10 Most Difficult SAT Math Questions

    Feb 04, 26 09:14 AM

    digitalsatmath424.png
    The 10 Most Difficult SAT Math Questions

    Read More