HOW TO FIND THE INDICATED TERM FROM GIVEN NTH TERM OF THE SEQUENCE

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

To find the indicated term of a sequence, substitute the given value for n. 

For example, if you want to find 5th term of a sequence, substitute n = 5 in the nth term of the sequence.

Example 1 :

Find the indicated terms in each of the sequences whose nth terms are given by

an  =  (n + 2)/(2n + 3);     a7 and a9

Solution :

In order to find 7th term and 9th term, we have to apply 7 and 9 instead of n in the given nth term of the sequence.

7th term

an  =  (n + 2)/(2n + 3)

n = 7

a7  =  (7 + 2)/(2(7) + 3)

a7  =  9/(14 + 3)

a7  =  9/17

9th term

an  =  (n + 2)/(2n + 3)

n = 9

a9  =  (9 + 2)/(2(9) + 3)

a9  =  11/(18 + 3)

a9  =  11/21

Example 2 :

Find the indicated terms in each of the sequences whose nth terms are given by

an  =  (-1)n 2n + 3(n + 1);     a5 and a8

Solution :

In order to find 5th term and 8th term, we have to apply 5 and 8 instead of n in the given nth term of the sequence.

5th term

an  =  (-1)n 2n + 3(n + 1)

n = 5

a5  =  (-1)5 25 + 3(5+1)

a7  =  -1 ⋅ 28⋅ (6)

a7  =  -1 ⋅ (256)⋅ (6)

a7  =  - 1536

8th term

an  =  (-1)n 2n + 3(n + 1)

n  =  8

a8  =  (-1)8 28 + 3(8+1)

=  1 ⋅ 211 ⋅ (9)

a8  =  ⋅ (2048) ⋅ (9)

a8  =  18432

Example 3 :

Find the indicated terms in each of the sequences whose nth terms are given by

an  =  2n2 - 3n + 1;  a5 and a7

Solution :

In order to find 5th term and 7th term, we have to apply 5 and 7 instead of n in the given nth term of the sequence.

5th term

an  =  2n2 - 3n + 1

n = 5

a5  =  2n2 - 3n + 1

a5  =  2(5)2 - 3(5) + 1

a5  =  2(25) - 15 + 1

a5  =  50 - 15 + 1

a5  =  51 - 15

a5  =  36

7th term

an  =  (-1)n 2n + 3(n + 1)

n  =  8

a7  =  2n2 - 3n + 1

a7  =  2(7)2 - 3(7) + 1

a7  =  2(49) - 21 + 1

a7  =  98 - 21 + 1

a7  =  99 - 21

=  78

Example 4 :

Find the indicated terms in each of the sequences whose nth terms are given by

an  =  (-1)n (1 - n + n2);  a5 and a8

Solution :

In order to find 5th term and 8th term, we have to apply 5 and 8 instead of n in the given nth term of the sequence.

5th term

an  =  (-1)n (1 - n + n2)

n = 5

an  =  (-1)5 (1 - 5 + 52)

a5  =  (-1)(1 - 5 + 25)

a5  =  (-1)(26 - 5)

a5  =  -21

8th term

an  =  (-1)n (1 - n + n2)

n = 8

an  =  (-1)8 (1 - 8 + 82)

a8  =  1 (1 - 8 + 64)

a8  =  (65 - 8)

a8  =  57

Example 5 :

Write an equation for the nth term of the arithmetic sequence. Then find a25.

a)  4, 5, 6, 7, . . .

b) 8, 16, 24, 32, . . .

c) 1, 0, −1, −2, . . .

Solution :

a)  4, 5, 6, 7, . . .

a = 4, d = 5 - 4 ==> 1 and n = 25

an = a + (n - 1)d

a25 = 4 + (25 - 1)(1)

= 4 + 24(1)

= 4 + 24

a25 = 28

b) 8, 16, 24, 32, . . .

a = 8, d = 16 - 8 ==> 8 and n = 25

a25 = 8 + (25 - 1)(8)

= 8 + 24(8)

= 8 + 192

a25 = 200

c) 1, 0, −1, −2, . . .

a = 1, d = 0 - 1 ==> -1 and n = 25

a25 = 1 + (25 - 1)(-1)

= 1 + 24(-1)

= 1 - 24

a25 = -23

Example 6 :

Which is the third term of the sequence defined by 

an = 4n + 6 ?

a)  6     b)  10     c)  14    d)  18

Solution :

an = 4n + 6

To find 3rd term, we have to apply n = 3

a3 = 4(3) + 6

= 12 + 6

= 18

So, option d is correct.

Example 7 :

What is the rule for the nth term of the arithmetic sequence with a21 = 147 and common difference d = 11 ?

a)  an = 11n - 21        b)  an = 11n - 42

c)  an = 11n + 21       d)  an = 11n - 84

Solution :

an = a + (n - 1)d

a21 = 147

a = ?, d = 11 and n = 21

147 = a + (21 - 1)11

147 = a + 20(11)

147 = a + 220

a = 147 - 220

a = -73

Applying the value of a and d in the formula of nth term, we get

an = -73 + (n - 1)(11)

= -73 + 11n - 11

= -84 + 11n

a= 11n - 84

So, option d is correct.

Example 8 :

Find the indicated term for each of the following sequences.

T21 = 195, T10 = 85 and T1

Solution :

T21 = 195

a + 20d = 195 -------(1)

T10 = 85

a + 9d = 85 --------(2)

(1) - (2)

a + 20d - (a + 9d) = 195 - 85

20d - 9d = 110

11d = 110

d = 110/11

d = 10

Applying the value of d, we get

a + 9(10) = 85

a + 90 = 85

a = 85 - 90

a = -5

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Practice

    Dec 05, 25 04:04 AM

    satmathquestions1.png
    SAT Math Practice - Different Topics - Concept - Formulas - Example problems with step by step explanation

    Read More

  2. 10 Hard SAT Math Questions (Part - 37)

    Dec 03, 25 07:02 AM

    digitalsatmath411.png
    10 Hard SAT Math Questions (Part - 37)

    Read More

  3. Factorial Problems and Solutions

    Dec 02, 25 09:27 AM

    Factorial Problems and Solutions

    Read More