# HOW TO FIND THE FIRST THREE TERMS OF A GEOMETRIC SEQUENCE

How to Find the First Three Terms of a Geometric Sequence ?

A Geometric Progression is a sequence in which each term is obtained by multiplying a fixed non-zero number to the preceding term except the first term. The fixed number is called common ratio. The common ratio is usually denoted by r.

General form of geometric progression :

a, ar, ar2, ar3,...................

Here a = first term and r - t2/t1

## How to Find the First Three Terms of a Geometric Sequence - Questions

Question 1 :

Write the first three terms of the G.P. whose first term and the common ratio are given below.

(i) a = 6, r = 3

Solution :

First term (a)  =  6

Second term  =  ar  =  6(3)  =  18

Third term  =  ar2  =  6(3)2  =  54

Hence the first three terms are 6, 18, 54.

(ii) a = 2, r = √2

Solution :

First term (a)  =  2

Second term  =  ar  =  2(2)  =  2

Third term  =  ar2  =  2(2)2  =  2(2)  =  22

Hence the first three terms are 2, 2, 22

(iii)  a = 1000, r = 2/5

Solution :

First term (a)  =  1000

Second term  =  ar  =  1000(2/5)  =  400

Third term  =  ar2  =  1000(2/5)2  =  1000(4/25)  =  160

Hence the first three terms are 1000, 400, 160.

## How to Find the Indicated Term of a Geometric Sequence ?

nth term of a geometric sequence :

tn  =  ar n -1

Question 1 :

In a G.P. 729, 243, 81,… find t7 .

Solution :

tn  =  ar n -1

a = 729, r = 243/729  =   1/3 and n = 7

t7  =  (729) (1/3)7 -1

=  (729) (1/3)6

t7   =  1

Question 2 :

Find x so that x + 6, x + 12 and x + 15 are consecutive terms of a Geometric Progression.

Solution :

b = √ac

(x + 12)  =  √(x + 6) (x + 15)

Taking squares on both sides,

(x + 12)2  =  (x + 6) (x + 15)

x2 + 122 + 2x(12)  =  x2 + 15x + 6x + 90

144 + 24x  =  21x + 90

24x - 21x  =  90 - 144

3x  =  -54

x  =  -18

Hence the value of x is -18.

Question 3 :

Find the number of terms in the following G.P.

(i) 4, 8, 16,…,8192 ?

Solution :

Let nth term be "8192"

tn  =  8192

a = 4, r = 8/4  =  2

ar n -1  =  8192

4(2)n -1  =  8192

22(2)n -1  =  8192

2 n+1  =  213

n + 1  =  13

n = 12

Hence the 12th term of the above geometric sequence is 8192.

(ii) 1/3, 1/9, 1/27,................1/2187

Solution :

Let nth term be "1/2187"

tn  =  1/2187

a = 1/3, r = (1/9)/(1/3)  =  1/3

ar n -1  =  1/2187

(1/3)(1/3)n -1  =  1/2187

(1/3)1 + n-1  =  1/2187

(1/3)n  =  (1/3)7

n  =  7

Hence the 7th term of the above sequence is 1/2187.

After having gone through the stuff given above, we hope that the students would have understood, "How to Find the First Three Terms of a Geometric Sequence".

Apart from the stuff given in this section "How to Find the First Three Terms of a Geometric Sequence"if you need any other stuff in math, please use our google custom search here.

WORD PROBLEMS

HCF and LCM  word problems

Word problems on simple equations

Word problems on linear equations

Algebra word problems

Word problems on trains

Area and perimeter word problems

Word problems on direct variation and inverse variation

Word problems on unit price

Word problems on unit rate

Word problems on comparing rates

Converting customary units word problems

Converting metric units word problems

Word problems on simple interest

Word problems on compound interest

Word problems on types of angles

Complementary and supplementary angles word problems

Double facts word problems

Trigonometry word problems

Percentage word problems

Profit and loss word problems

Markup and markdown word problems

Decimal word problems

Word problems on fractions

Word problems on mixed fractrions

One step equation word problems

Linear inequalities word problems

Ratio and proportion word problems

Time and work word problems

Word problems on sets and venn diagrams

Word problems on ages

Pythagorean theorem word problems

Percent of a number word problems

Word problems on constant speed

Word problems on average speed

Word problems on sum of the angles of a triangle is 180 degree

OTHER TOPICS

Profit and loss shortcuts

Percentage shortcuts

Times table shortcuts

Time, speed and distance shortcuts

Ratio and proportion shortcuts

Domain and range of rational functions

Domain and range of rational functions with holes

Graphing rational functions

Graphing rational functions with holes

Converting repeating decimals in to fractions

Decimal representation of rational numbers

Finding square root using long division

L.C.M method to solve time and work problems

Translating the word problems in to algebraic expressions

Remainder when 2 power 256 is divided by 17

Remainder when 17 power 23 is divided by 16

Sum of all three digit numbers divisible by 6

Sum of all three digit numbers divisible by 7

Sum of all three digit numbers divisible by 8

Sum of all three digit numbers formed using 1, 3, 4

Sum of all three four digit numbers formed with non zero digits

Sum of all three four digit numbers formed using 0, 1, 2, 3

Sum of all three four digit numbers formed using 1, 2, 5, 6