HOW TO FIND THE AREA OF A RHOMBUS WITH VERTICES

Let d1 and d2 be the lengths of the diagonals of a rhombus.

Formula for area of a rhombus :

If the four vertices of a rhombus are given, find the length of each diagonal using distance formula and find the area of the rhombus using the formula given above.

Distance between the two points (x1, y1) and (x2, y2) :

Example 1 :

Find the area of a rhombus with the following vertices taken in order.

(1, 4), (5, 1), (1, -2), (-3, 1)

Solution :

Length of of diagonal d1 :

d= √[(x2 - x1)2 + (y2 - y1)2]

Substitute (x1, y1) = (1, 4) and (x2, y2) = (1, -2).

d= √[(1 - 1)2 + (-2 - 4)2]

= √[0 + (-6)2]

= √36

= 6

Length of of diagonal d2 :

d= √[(x2 - x1)2 + (y2 - y1)2]

Substitute (x1, y1) = (5, 1) and (x2, y2) = (-3, 1).

d= √[(-3 - 5)2 + (1 - 1)2]

= √[(-8)2 + 0]

= √64

= 8

Area of rhombus :

= (1/2) x d1 x d2

Substitute d1 = 8 and d2 = 6.

= (1/2) x 8 x 6

= 24 square units

Example 2 :

Find the area of a rhombus with the following vertices taken in order.

(3, 0), (4, 5), (-1, 4), (-2, -1)

Solution :

Length of of diagonal d1 :

d= √[(x2 - x1)2 + (y2 - y1)2]

Substitute (x1, y1) = (3, 0) and (x2, y2) = (-1, 4).

d= √[(-1 - 3)2 + (4 - 0)2]

= √[(-4)2 + 42]

= √[16 + 16]

= √32

√(2 x 16)

= 4√2

Length of of diagonal d2 :

d= √[(x2 - x1)2 + (y2 - y1)2]

Substitute (x1, y1) = (4, 5) and (x2, y2) = (-2, -1).

d= √[(-2 - 4)2 + (-1 - 5)2]

= √[(-6)2 + (-6)2]

= √[36 + 36]

= √72

√(2 x 36)

= 6√2

Area of rhombus :

= (1/2) x d1 x d2

Substitute d1 = 4√2 and d2 = 6√2.

= (1/2) x 4√2 x 6√2

= 24 square units

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 29)

    Oct 16, 25 06:04 AM

    10 Hard SAT Math Questions (Part - 29)

    Read More

  2. 10 Hard SAT Math Questions (Part - 28)

    Oct 14, 25 10:57 AM

    10 Hard SAT Math Questions (Part - 28)

    Read More

  3. SAT Math Questions and Answers

    Oct 13, 25 01:09 PM

    SAT Math Questions and Answers

    Read More