# HOW TO FIND REMOVABLE DISCONTINUITY AT THE POINT

## About "How to Find Removable Discontinuity At The Point"

How to Find Removable Discontinuity At The Point :

Here we are going to see how to test if the given function has removable discontinuity at the given point.

The function f(x) is defined at all points of the real line except x = 0. That is, f(0) is undefined, but lim x -> 0 sin x/x  =  1. If we redefine the function f(x) as

h is defined at all points of the real line including x = 0. Moreover, h is continuous at x = 0 since

lim x -> 0 h(x)  = lim x -> 0 (sin x / x)   =  1  =  h(0)

Note that h(x) = f(x) for all x ≠ 0. Even though the original function f(x) fails to be continuous at x = 0, the redefined function became continuous at 0.

That is, we could remove the discontinuity by redefining the function. Such discontinuous points are called removable  discontinuities. This example leads us to have the following.

Definition of removable discontinuity :

A function f defined on an interval I ⊆ R is said to have removable discontinuity at x0 ∈ I if there is a function h :

I -> R such that h(x)  =

## Finding Removable Discontinuity At the given point - Examples

Question 1 :

Which of the following functions f has a removable discontinuity at x = x0? If the discontinuity is removable, find a function g that agrees with f for x ≠ x0 and is continuous on R.

(i)  f(x)  =  (x3 + 64)/(x + 4), x0  =  -4

Solution :

In order to check if the given function is continuous at the point x0  =  -4, let us apply -4

f(x)  =  ((-4)3 + 64)/(-4 + 4),

=  (-64 + 64)/0

=  0/0

The given function is not continuous at x = -4. In order to redefine the function, we have to simplify f(x).

f(x)  =  (x + 4)(x2 - 4x + 16)/(x + 4)

f(x)  =  (x2 - 4x + 16)

f(-4)  =  ((-4)2 - 4(-4) + 16)

=  16 + 16 + 16

=  48

Hence it has removable discontinuity at x = -4. By redefining the function, we get

(iii)  f(x)  =  (3 - √x)/(9 - x), x0  =  9

Solution :

In order to check if the given function is continuous at the point x0  =  9, let us apply 9

f(x)  =  (3 - √x)/(9 - x),

=  (3 - √9)/(9 - 9)

=  (3 – 3) / 0

=  0/0

The given function is not continuous at x = 9. In order to redefine the function, we have to simplify f(x).

f(x)  =  (3 - √x)/(32 – (√x)2)

f(x)  =   (3 - √x)/(3 + √x) (3 – √x)

=  1/(3 + √x)

f(9)  =  1/(3 + √9)

=  1/(3 + 3)

=  1/6

Hence it has removable discontinuity at x = 9. By redefining the function, we get

After having gone through the stuff given above, we hope that the students would have understood, "How to Find Removable Discontinuity At The Point"

Apart from the stuff given in "How to Find Removable Discontinuity At The Point", if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

## Recent Articles

1. ### SAT Math Videos

May 22, 24 06:32 AM

SAT Math Videos (Part 1 - No Calculator)

2. ### Simplifying Algebraic Expressions with Fractional Coefficients

May 17, 24 08:12 AM

Simplifying Algebraic Expressions with Fractional Coefficients