HOW TO FIND POINT OF INTERSECTION OF TWO LINES

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

If two straight lines are not parallel then they will meet at a point.This common point for both straight lines is called the point of intersection.

If the equations of two intersecting straight lines are given then their intersecting point is obtained by solving equations simultaneously.

Finding Point of Intersection of Two Lines - Examples

Example 1 :

Find the intersection point of the straight lines 

x - 5y + 17  =  0  and 2x + y + 1 = 0

Solution :

x - 5y + 17  =  0 ----- (1)

2x + y + 1  =  0  ------(2) 

(2)  5 ==> 10x + 5y + 5 = 0  ----(3)

                          x - 5 y + 17  =  0  

                       10 x + 5 y + 5  =  0

                       ---------------------

                        11 x  + 22  =  0

                       ----------------

                        11 x   =  - 22

                          x  =  -2

By substituting x = -2 in (1), we get

 -2 - 5y + 17  =  0

15 - 5 y  =  0  

- 5y  =  - 15

-5y  =  - 15

y  =  3

So the intersection point of the straight lines is (-2, 3).

Example 2 :

Find the intersection point of the straight lines 

5x - 3y - 8  =  0  and  2x - 3y - 5  =  0

Solution :

5x - 3y - 8  =  0 ----- (1)

2x - 3y - 5  =  0 ------(2) 

5 x - 3 y - 8  =  0  

2 x - 3 y - 5  =  0

(-)  (+)  (+) 

---------------------

3 x - 3  =  0

                          x  =  1

By applying x  =  1 in the first equation

5(1) - 3y - 8  =  0

5 - 8 - 3y  =  0 

-3 - 3y  =  0  

-3y  =  3

y  =  -1

So the intersection point of the straight lines is (1, -1).

Example 3 :

Find the intersection point of the straight lines

4x - 7y  =  0  and 8x - y - 26  =  0

Solution :

4x - 7y  =  0 ----- (1)

8x - y - 26  =  0  ------(2) 

(2)  7 =>   56 x - 7 y - 182 = 0

4x - 7y + 0  =  0  

56 x - 7y - 182  =  0

                               (-)     (+)    (+)

                             --------------------

-52 x  + 182  =  0

x  =  -182/(-52)

x  =  7/2

By applying x  =  7/2 in (1), we get

-4(7/2) - 7 y  =  0

-14 - 7y  =  0

-7y  =  14

y  =  -2

So the point of intersection of the given lines is (7/2, -2).

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

Recent Articles

  1. AP Calculus BC Problems with Solutions

    Dec 20, 25 10:51 AM

    AP Calculus BC Problems with Solutions

    Read More

  2. AP Precalculus Problems and Solutions (Part - 1)

    Dec 20, 25 10:49 AM

    AP Precalculus Problems and Solutions (Part - 1)

    Read More

  3. AP Calculus AB Problems with Solutions (Part - 1)

    Dec 20, 25 10:49 AM

    apcalculusab1.png
    AP Calculus AB Problems with Solutions (Part - 1)

    Read More