HOW TO FIND nth TERM OF ARITHMETIC SEQUENCE

Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

The formula to find nth term of an arithmetic sequence :

an = a1 + (n - 1)d

an ----> nth term

a1 ----> 1st term

d ----> common difference 

Examples 1-4 : Find the nth term of the following arithmetic sequences :

Example 1 :

4, 9, 14, …………

Solution :

Common difference :

d = a2 β€“ a1

= 9 β€“ 4

= 5

nth term of an arithmetic sequence :

an = a1 + (n - 1)d

Substitute a1 = 4 and d = 5.

an = 4 + (n - 1)(5)

= 4 + 5n - 5

= 5n - 1

Example 2 :

125, 120, 115, 110, β€¦β€¦β€¦β€¦

Solution :

Common difference :

d = a2 – a1

= 120 – 125

-5

nth term of an arithmetic sequence :

an = a1 + (n - 1)d

Substitute a1 = 125 and d = -5.

an = 125 + (n - 1)(-5)

= 125 - 5n + 5

= 130 - 5n

Example 3 :

24, 23ΒΌ, 22Β½, 21ΒΎ, β€¦β€¦β€¦β€¦

Solution :

Common difference :

d = a2 β€“ a1

23ΒΌ - 24

= 93/4 - 24

= (93 - 96)/4

= -3/4

nth term of an arithmetic sequence :

an = a1 + (n - 1)d

Substitute a1 = 24 and d = -3/4.

an = 24 + (n - 1)(-3/4)

= 24 - 3n/4 + 3/4

= 24 + 3/4 - 3n/4

= (96 + 3)/4 - 3n/4

= 99/4 - 3n/4

Example 4 :

√2, 3√2, 5√2, β€¦β€¦β€¦β€¦

Solution :

Common difference :

d = a2 β€“ a1

3√2 - βˆš2

= 2√2

nth term of an arithmetic sequence :

an = a1 + (n - 1)d

Substitute a1 = βˆš2 and d = 2√2.

an = βˆš2 + (n - 1)(2√2)

√2 + (2√2)n - 2√2

= (2√2)n - √2

Example 5 :

The 10th and 18th terms of an arithmetic sequence are 41 and 73 respectively. Find the nth term.

Solution :

10th term = 41

a1 + (10 - 1)d = 41

a1 + 9d = 41 ----(1)

18th term = 73

a1 + (18 - 1)d = 73

a1 + 17d = 73 ----(2)

(2) - (1) :

8d = 32

d = 4

Substitute d = 4 in (1).

a1 + 9(4) = 41

a1 + 36 = 41

a1 = 5

nth term of an arithmetic sequence :

an = a1 + (n - 1)d

Substitute a1 = 5 and d = 4.

an = 5 + (n - 1)(4)

= 5 + 4n - 4

= 4n + 1

Example 6 :

Find n so that the nth terms of the following two arithmetic sequences are the same.

1, 7, 13, 19, β€¦β€¦β€¦β€¦

100, 95, 90, β€¦β€¦β€¦β€¦

Solution :

Part (i) :

1, 7, 13, 19, β€¦β€¦β€¦β€¦

Common difference :

d = a2 β€“ a1

= 7 - 1

= 6

nth term of an arithmetic sequence :

an = a1 + (n - 1)d

Substitute a1 = 1 and d = 6.

an = 1 + (n - 1)(6)

= 1 + 6n - 6

= 6n - 5

Part (ii) :

100, 95, 90, β€¦β€¦β€¦β€¦

Common difference :

d = a2 β€“ a1

= 95 - 100

= -5

nth term of an arithmetic sequence :

an = a1 + (n - 1)d

Substitute a1 = 100 and d = -5.

an = 100 + (n - 1)(-5)

= 100 - 5n + 5

= 105 - 5n

Solve for n :

Given : nth terms of the two arithmetic sequences are the same.

6n - 5 = 105 - 5n

11n - 5 = 105

11n = 110

n = 10

Example 7 :

Online bidding for a purse increases by $5 for each bid after the $60 initial bid

arithmetic-sequence-q1

a. Write a function that represents the arithmetic sequence.

b. Graph the function.

c. The winning bid is $105. How many bids were there?

Solution :

a) f(n) = a + (n - 1) d

a = 60, d = 65 - 60 ==> 5

f(n) = 60 + (n - 1)5

= 60 + 5n - 5

= 5n + 55

b) (1, 60) (2, 65) (3, 70) and (4, 75)

arithmetic-sequence-q1p1.png

c)  When number of bids = 105

f(n) = 5n + 55

105 = 5n + 55

105 - 55 = 5n

5n = 50

n = 50/5

n = 10

There were 10 bids.

Example 7 :

A carnival charges $2 for each game after you pay a $5 entry fee.

arithmetic-sequence-q2.png

a. Write a function that represents the arithmetic sequence.

b. Graph the function.

c. How many games can you play when you take $29 to the carnival?

Solution :

a)  f(n) = a + (n - 1) d

a = 7, d = 9 - 7 ==> 2

f(n) = 7 + (n - 1)2

= 7 + 2n - 2

f(n) = 2n + 5

b) (1, 7) (2, 9) (3, 11) and (4, 13)

arithmetic-sequence-q2p1.png

c)  f(n) = 2n + 5

Amount taken = 29

29 = 2n + 5

29 - 5 = 2n

2n = 24

n = 24/2

n = 12

So, the required number of games is 12.

Example 8 :

Firewood is stacked in a pile. The bottom row has 20 logs, and the top row has 14 logs. Each row has one more log than the row above it. How many rows of logs are in the pile?

Solution :

Number of logs in the first row = 20

Number of logs in the last row = 14

When we look from the bottom to top, each row will have 1 less log.

f(n) = a + (n - 1)d

14 = 20 + (n - 1) (-1)

14 - 20 = -n + 1

-6 = -n + 1

n = 1 + 6

n = 7

So, there are 7 rows of logs.

Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

Β©All rights reserved. onlinemath4all.com

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 38)

    Dec 08, 25 12:12 AM

    digitalsatmath416.png
    10 Hard SAT Math Questions (Part - 38)

    Read More

  2. SAT Math Practice

    Dec 05, 25 04:04 AM

    satmathquestions1.png
    SAT Math Practice - Different Topics - Concept - Formulas - Example problems with step by step explanation

    Read More

  3. 10 Hard SAT Math Questions (Part - 37)

    Dec 03, 25 07:02 AM

    digitalsatmath411.png
    10 Hard SAT Math Questions (Part - 37)

    Read More