HOW TO FIND MISSING COORDINATES USING DISTANCE FORMULA

Using two endpoints of the line segment, we can find distance between two points.

D  =  √[(x2 – x1)2 + (y2 – y1)2]

Here D is the distance and the coordinates of two points are (x1, y1) and (x2, y2)

Find a given that :

Example 1  :

P(2, 3) and Q(a, -1) are 4 units apart

Solution  :

Given points, P(2, 3) and Q(a, -1)

P(2, 3) ----->(x1, y1)

Q(a, -1) ----->(x2, y2)

Using distance Formula :

Here, d  =  4 units.

d  =  √[(x2 – x1)2 + (y2 – y1)2]

4  =  √[(a – 2)2 + (-1 – 3)2]

4  =  √[(a – 2)2 + (-4)2]

4  = √[(a – 2)2 + 16]

4  =  √[(a2 – 4a + 4) + 16]

4  =  √(a2 – 4a + 20)

Taking square root on both sides, we get

(4)2  =  [√(a2 – 4a + 20)]2

16  =  a2 – 4a + 20

a2 – 4a + 20 – 16  =  0

a2 - 4a + 4  =  0

By factorization, we get

(a – 2) (a – 2)  =  0

a  =  2

So, the value of a is 2

Example 2 :

P(-1, 1) and Q(a, -2) are 5 units apart

Solution :

Given points, P(-1, 1) and Q(a, -2)

P(-1, 1) ----->(x1, y1)

Q(a, -2) ----->(x2, y2)

Using distance Formula :

Here, d  =  5 units.

d  =  √[(x2 – x1)2 + (y2 – y1)2]

5  =  √[(a – (-1))2 + (-2 – 1)2]

5  =  √[(a + 1)2 + (-3)2]

5  = √[(a + 1)2 + 9]

5  =  √[(a2 + 2a + 1) + 9]

5  =  √(a2 + 2a + 10)

Taking square root on both sides, we get

(5)2  =  [√(a2 + 2a + 10)]2

25  =  a2 + 2a + 10

a2 + 2a + 10 – 25  =  0

a2 + 2a - 15  =  0

By factorization, we get

(a – 3) (a + 5)  =  0

a  =  3 or -5

So, the value of a is 3 or -5

Example 3 :

X(a, a) is √8 units from the origin.

Solution :

Given points, X(a, a) and the origin O(0, 0)

X(a, a) ----->(x1, y1)

O(0, 0) ----->(x2, y2)

Using distance Formula :

Here, d  =  √8 units.

d  =  √[(x2 – x1)2 + (y2 – y1)2]

√8  =  √[(0 – a)2 + (0 – a)2]

√8  =  √[(-a)2 + (-a)2]

√8  =  √(a2 + a2)

√8  = √(2a2)

Taking square root on both sides, we get

(√8)2  = [√(2a2)]2

8  =  2a2

4  =  a2

a  =  ±2

So, the value of a is ±2

Example 4 :

A(0, a) is equidistant from P(3, -3) and Q(-2, 2)

Solution :

Let the point on y-axis be A(0, a)

Now, A(0, a) is equidistant from the points P(3, -3) and Q(-2, 2)

AP  =  AQ

Using distance Formula :

Distance between A(0, a) and P(3, -3)

A(0, a) ----->(x1, y1)

P(3, -3) ----->(x2, y2)

=  √[(x2 – x1)2 + (y2 – y1)2]

=  √[(3 – 0)2 + (-3 – a)2]

=  √[(3)2 + (-3 – a)2

=  √[9 + (-3 – a)2] -------(1)

Distance between A(0, a) and Q(-2, 2)

A(0, a) ----->(x1, y1)

P(-2, 2) ----->(x2, y2)

=  √[(x2 – x1)2 + (y2 – y1)2]

=  √[(-2 – 0)2 + (2 – a)2]

=  √[(-2)2 + (2 – a)2

=  √[4 + (2 – a)2] -------(2)

Equating (1) and (2), we get

√[9 + (-3 – a)2]  =  √[4 + (2 – a)2]

Taking square root on both sides, we get

(√[9 + (-3 – a)2])2  =  (√[4 + (2 – a)2])2

9 + (-3 – a)2  =  4 + (2 – a)2

9 + 9 + 6a + a2  =  4 + 4 – 4a + a2

18 + 6a + a2  =  8 – 4a + a2

18 + 6a + a2 - 8 + 4a - a2  =  0

10a + 10  =  0

10a  =  -10

a  =  -1

So, the value of a is -1

Example 5 :

If the coordinates one point on the circle is (-2, 3) and its radius is 3 unit the coordinates of its center are (a , 3), then a = ______

Solution :

Radius of the circle = distance between center and one of the point on the circle

 √[(x2 – x1)2 + (y2 – y1)2] = 3

 √[(a + 2)2 + (3 - 3)2] = 3

 √(a + 2)2 = 3

a + 2 = 3

a = 3 - 2

a = 1

Example 6 :

If P (–1, 1) is the midpoint of the line segment joining A(–3, b) and B (1, b+4 ) then b = ____ ?

(a) 1            (b) –1               (c) 2     (d) 0

Solution :

Distance between the points AP and BP are equal.

=  √[(x2 – x1)2 + (y2 – y1)2]

A(–3, b) and P (–1, 1)

=  √[(-1 + 3)2 + (1 - b)2]

=  √[22 + (1 - b)2]

=  √4 + (1 - b)2 ----(1)

B (1, b+4 ) and P (–1, 1)

=  √[(1 + 1)2 + (b + 4 - 1)2]

=  √[(2)2 + (b + 3)2]

=  √4 + (b + 3)2] ------(2)

(1) = (2)

√4 + (1 - b)2=  √4 + (b + 3)2]

1 - b = b + 3

-b - b = 3 - 1

-2b = 2

b = -1

So, the value of b is -1.

Example 7 :

If the point P (k-1 ,2) is equidistant from the points A (3, k) and B( k, 5) find the values of k.

Solution :

√(3 - (k - 1))2 +  (k - 2)2=  √(k - (k - 1))2 + (5 - 2)2]

√(3 - k + 1)2 +  (k - 2)2=  √(k - k + 1)2 + 32]

√(4 - k )2 +  (k - 2)2=  √10

(4 - k )2 +  (k - 2)=  10

16 - 8k + k2 + k-4k + 4 = 10

2k2 - 12k + 20 = 10

2k2 - 12k + 10 = 0

k2 - 6k + 5 = 0

(k - 1)(k - 5) = 0

k = 1 and k = 5

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 197)

    Jun 29, 25 08:01 AM

    digitalsatmath264.png
    Digital SAT Math Problems and Solutions (Part - 197)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 196)

    Jun 28, 25 09:20 PM

    Digital SAT Math Problems and Solutions (Part - 196)

    Read More

  3. Fundamentals of Business Mathematics

    Jun 27, 25 09:33 PM

    Fundamentals of Business Mathematics

    Read More