HOW TO FIND LCM FROM TWO POLYNOMIALS AND GCD

Subscribe to our ▶️ YouTube channel đŸ”´ for the latest videos, updates, and tips.

Let f(x) and g(x) be two polymials. 

We can find the LCM or GCD of the two polynomials using the relationship given below. 

f (x) × g(x)  =  LCM × GCD

Practice Problems

Problem 1 :

Find the LCM of the following polynomials whose GCD is (a - 2).

(a2 + 4a −12)  and  (a2 −5a + 6)

Solution :

Let f(x)  =  a2 + 4a −12, g(x)  =  a2 âˆ’5a + 6.

f(x)  =   a2 + 4a −12  

  =  a2 + 6a - 2a −12

  =  a(a + 6) - 2(a + 6)

 f(x)  =  (a + 6)(a - 2)

g(x) = a2 âˆ’5a + 6

  =  a2 - 2a - 3a + 6

  =  a(a - 2) - 3(a - 6)

g(x)  =  (a - 3)(a - 2)

GCD is (a -2)

f (x) × g(x) = LCM × GCD

LCM  =  [f(x) × g(x)] / GCD

LCM  =  [(a + 6)(a - 2)  (a - 3)(a - 2)] /  a -2

LCM  =  (a + 6)(a - 2)  (a - 3)

Problem 2 :

Find the LCM of the following polynomials whose GCD is (x - 3a).

(x 4 -27a3x)  and  (x -3a)2

Solution :

Let f(x)  =  x 4 -27a3x, g(x)  =   (x -3a)2

f(x)  =  x(x3 - 27a3)

f(x)  =  x(x3-(3a)3)

  f(x)  =  x(x-3a)(x2-x(3a)+(3a)2)

f(x)  =  x (x- 3a)(x2-3ax+9a2)

g(x)  =   (x -3a)2

GCD is (x -3a)

f (x) × g(x) = LCM × GCD

LCM  =  [f(x) × g(x)] / GCD

LCM  =  [x(x- 3a)(x2-3ax+9a2)(x -3a)2] /  (x -3a)

LCM  =  x(x2-3ax+9a2)(x -3a)2

How to Find GCD from Two Polynomials and LCM

Problem 1 :

Find the GCD of the following polynomials.  

12(x4 -x3)  and  8(x4 −3x3 +2x2)

Given that LCM is 24x3(x -1)(x -2).

Solution :

Let f(x)  =  12(x4 -x3), g(x)  =  8(x4 âˆ’3x3 +2x2)

LCM  =  24x3(x -1)(x-2)

f(x)  =  12(x4 -x3)

f(x)  =  12x3(x - 1)

g(x)  =  8(x4 âˆ’3x3 +2x2)

g(x)  =  8x2(x2 - 3x + 2)

GCD  =  24x3(x -1)(x -2)

f (x) × g(x) = LCM × GCD

GCD  =  [f(x) × g(x)] / LCM

GCD  =  [12x3(x - 1) 8x2(x2 - 3x + 2)]/ 24x3(x -1)(x -2)

GCD  =  4x2(x-1)

Problem 2 :

Find the GCD of the following polynomials.  

(x3 + y3)  and  (x4 + x2y2 + y4)

Given that LCM is (x3 + y3)(x2 + xy + y2).

Solution :

Let f(x)  =  (x3 + y3), g(x)  =  (x4 + x2y2 + y4)

LCM is (x3 + y3)(x2 + xy + y2)

f(x)  =  (x3 + y3)

g(x)  =  (x4 + x2y2 + y4)

= (x2 + y2)2 - (xy)2

= (x2 + y2)2 - (xy)2

= (x2-xy+ y2 )(x2+ xy+ y2)

LCM  =  (x3 + y3)(x2 + xy + y2)

f (x) × g(x) = LCM × GCD

GCD  =  [f(x) × g(x)] / LCM

GCD  =  [ (x3 + y3)(x2-xy+ y)(x2+ xy+ y2)] / (x3 + y3)(x2 + xy + y2)

GCD  =  (x- xy +  y2)

Problem 3 :

LCM and GCD of the two polynomials p(x) and q(x) and the polynomial p(x) are given below. Find q(x). 

LCM  =  a3 âˆ’10a2 +11a + 70

GCD  =  a - 7

p(x)  =  a2 âˆ’12a + 35

Solution :

p (x) × q(x)  =  LCM × GCD

Then, 

q(x)  =  (LCM × GCD) / p (x)

=   (a3 âˆ’10a2 +11a + 70)( a - 7)/(a2 âˆ’12a + 35)

q(x)  =  (a + 2) (a - 7) 

Problem 4 :

LCM and GCD of the two polynomials p(x) and q(x) and the polynomial q(x) are given below. Find p(x). 

LCM = (x2 +y2)(x4 +x2y2+y4)

GCD  =  (x2 -y2)(x4 âˆ’y4)

q(x)  =  (x2 +y2 âˆ’xy)

Solution :

p (x) × q(x)  =  LCM × GCD

Then, 

p(x)  =  (LCM × GCD)/q(x)

=  (x2 + y2)(x4 + x2y+ y4)(x- y2) / (x− y4)(x+ y2− xy)

=  (x4 - y4)(x4 + x2y+ y4) / (x− y4)(x+ y2− xy)

=  (x4 + x2y+ y4) / (x+ y2− xy)

=  [(x2 + y2)2 - (xy)2] / (x+ y2− xy)

=  (x- xy + y2)(x+ xy + y2(x2 âˆ’ xy + y2)

=  (x2+ xy+ y2)

Subscribe to our ▶️ YouTube channel đŸ”´ for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

ŠAll rights reserved. onlinemath4all.com

Recent Articles

  1. Quantitative Reasoning Questions and Answers

    Dec 14, 25 06:42 AM

    Quantitative Reasoning Questions and Answers

    Read More

  2. Specifying Units of Measure

    Dec 14, 25 06:38 AM

    Specifying Units of Measure

    Read More

  3. Coin Tossing Probability

    Dec 13, 25 10:11 AM

    Coin Tossing Probability - Concept - Sample Space - Formula - Solved Problems

    Read More