HOW TO FIND GCD AND LCM OF TWO POLYNOMIALS

How to Find GCD and LCM of Two Polynomials :

To find GCXD or LCM, first we have to find the factors of the given expression or polynomial.

  • If we have coefficients of x or y term, then we have to decompose the coefficients as much as possible.
  • If we have quadratic or cubic expression, then we have to factorize using suitable algebraic identities.
  • To get GCD, multiply the common factors
  • To get LCM, multiply highest factors.

How to Find GCD and LCM of Two Polynomials - Questions

Question 1 :

Find the LCM and GCD for the following and verify that f (x) × g(x) = LCM × GCD

(i) 21x2y, 35xy2

Let f(x)  =  21x2y and g(x)  =  35xy2

f(x)  =  21x2y  =  3 ⋅ 7 ⋅ x

g(x)  =  35xy2 =  5 ⋅ 7 ⋅ x y

L.C.M  =  7 ⋅ ⋅ 5 ⋅ x⋅ y2

  =  105 x2 y2

GCD   =  7 ⋅ x ⋅ y

  =  7xy

f(x) × g(x)  =  LCM × GCD

21x2y (35xy2)  =  (105 x2 y2)(7xy)

  735x3y3  =  735x3y3 

Hence the relationship verified.

(ii)  (x3 −1)(x +1), (x3 +1)

Solution :

Let f(x)  =  (x3 −1)(x +1) and g(x)  =  (x3 +1)

a3 -b3  =  (a-b)(a2 + ab + b2)

f(x)  =  (x3 −1)(x +1)  =  (x - 1)(x2 + x + 1)(x +1)

g(x)  =  (x3 +1) 

a3 + b3  =  (a+b)(a2 - ab + b2)

g(x)  =  (x3 + 1)  =  (x + 1)(x2 - x + 1)

L.C.M

  =  (x-1)(x+1)(x2+x+1)(x2-x+1)

  =  (x3 - y3)(x3 + y3)

  =  (x3)2 - (y3)2

  =  x6 - y6

G.C.D

GCD   = x + 1

f(x) × g(x)  =  LCM × GCD

(x3 −1)(x +1)  (x3 +1)  =  (x6 - y6) (x + 1)

(x3)2 - (y3)2(x + 1)  =  (x6 - y6) (x + 1)

 (x6 - y6) (x + 1)  =   (x6 - y6) (x + 1)

Hence the relationship verified.

(iii) (x2y + xy2), (x2 + xy)

Solution :

Let f(x) = (x2y + xy2)  and g(x) = (x2 + xy)

f(x) = (x2y + xy2)  =  xy (x + y)

g(x) = (x2 + xy)  =  x(x + y)

L.C.M  =  xy(x + y)

GCD   =  x(x + y)

f(x) × g(x)  =  LCM × GCD

xy (x + y)  x(x + y)  =  xy(x + y)  ⋅ x(x + y)

x2y(x + y)2  =  x2y(x + y)2

Hence the relationship verified.

After having gone through the stuff given above, we hope that the students would have understood, "How to Find GCD and LCM of Two Polynomials". 

Apart from the stuff given in this section "How to Find GCD and LCM of Two Polynomials"if you need any other stuff in math, please use our google custom search here.

Widget is loading comments...