HOW TO FACTOR POLYNOMIALS WITH 4 TERMS

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Factoring Four Term Polynomials by Grouping

In a polynomial with four terms, group first two terms together and last two terms together.

Determine the greatest common divisor of each group, if it exists.

If the greatest common divisor exists, factor it from each group and factor the polynomial completely. 

Factor the following polynomials by grouping :

Example 1 :

x3 - 2x2 - x + 2

Solution :

x3 - 2x2 - x + 2

= (x3 - 2x2) + (-x + 2)

 = x2(x - 2) - 1(x - 2)

 =  (x2 - 1)(x - 2)

 =  (x2 - 12)(x - 2)

Using algebraic identity a2 - b2 = (a + b)(a -b),

= (x + 1)(x - 1)(x - 2)

Example 2 :

x3 + 3x2 - x - 3

Solution :

= x3 + 3x2 - x - 3

= (x3 + 3x2) + (-x - 3)

= x2(x + 3) - 1(x + 3)

= (x2 - 1)(x + 3)

= (x2 - 12)(x + 3)

Using algebraic identity a2 - b2 = (a + b)(a -b),

= (x + 1)(x - 1)(x + 3)

Example 3 :

x3 + x2 - 4x - 4

Solution :

= x3 + x2 - 4x - 4

= (x3 + x2) + (-4x - 4)

= x2(x + 1) - 4(x - 1)

= (x2 - 4)(x + 1)

= (x2 - 22)(x + 1)

Using algebraic identity a2 - b2 = (a + b)(a -b),

= (x + 2)(x - 2)(x + 1)

Example 4 :

x3 - 3x2 + 2x - 6

Solution :

= x3 - 3x2 + 2x - 6

= (x3 - 3x2) + (2x - 6)

= x2(x - 3) + 2(x - 3)

= (x2 + 2)(x - 3)

Example 5 :

x4 - x3 - x + x2

Solution :

= x4 - x3 - x + x2

Arrange the terms with powers in descending order. 

= x4 - x3 + x2 - x

= (x4 - x3) + (x2 - x)

= x3(x - 1) + x(x - 1)

= (x+ x)(x - 1)

= x(x+ 1)(x - 1)

Example 6 :

5a - 5b - xa + xb

Solution :

= 5a - 5b - xa + xb

= (5a - 5b) + (-xa + xb)

= 5(a - b) - x(a - b)

= (a - b)(5 - x)

Factoring Four Term Polynomials without Grouping

Let P(x) be a polynomial with four terms.

To factor P(x) without grouping, substitute

x = -1, 1, -2, 2, -3, 3.......

P(-1) = 0 ----> (x + 1) is a factor of P(x)

P(1) = 0 ----> (x - 1) is a factor of P(x)

P(-2) = 0 ----> (x + 2) is a factor of P(x)

P(2) = 0 ----> (x - 2) is a factor of P(x)

If P(-1)  0, then (x + 1) is not a factor of P(x).

Then, try x = 1, x = -2, x = 2 and so on.

Once one of the linear factors of P(x) is found, the other factors can bound easily (the rest of the process has been explained in the following examples) 

Factor the following polynomials without grouping :

Example 1 :

x3 - 2x2 - x + 2

Solution :

Let p(x) = x3 - 2x2 - x + 2.

Substitute x = -1.

p(-1) = (-1)3 - 2(-1)2 - (-1) + 2

= -1 - 2(1) + 1 + 2

= -1 - 2 + 1 + 2

= 0

Since P(-1) = 0, (x + 1) is a factor of P(x).

Since P(x) is a cubic polynomial, the other factor can be assumed as (x2 + ax + b).

Then,

(x + 1)((x2 + ax + b) = x3 - 2x2 - x + 2

Comparing the coefficients of x and constants,

b + a = -1 ----(1)

b = 2

Substitute b = 2 in (1).

2 + a = -1

a = -3

x2 + ax + b = x2 - 3x + 2

Factors of (x2 - 3x + 2) are (x - 1) and (x - 2).

Therefore,

x3 - 2x2 - x + 2 = (x + 1)(x - 1)(x - 2)

Example 2 :

x3 + 3x2 - 4x - 12

Solution :

Let p(x) = x3 + 3x2 - 4x - 12.

Substitute x = -1.

p(-1) = (-1)3 + 3(-1)2 - 4(-1) - 12

= -1 + 3(1) + 4 - 12

= -1 + 3 + 4 - 12

= -6 ≠ 0

Since P(-1)  0, (x + 1) is not a factor of P(x)..

Substitute x = 1.

p(1) = 13 + 3(1)2 - 4(1) - 12

= 1 + 3 - 4 - 12

= -12 ≠ 0

Substitute x = -2.

p(-2) = (-2)3 + 3(-2)2 - 4(-2) - 12

= -8 + 3(4) - 8 - 12

= -8 + 12 - 8 - 12

= 0

Since P(-2) = 0, (x + 2) is a factor of P(x).

Since P(x) is a cubic polynomial, the other factor can be assumed as (x2 + ax + b).

Then,

(x + 2)((x2 + ax + b) = x3 + 3x2 - 4x - 12

Comparing the coefficients of x and constants,

b + 2a = -4 ----(1)

2b = -12

b = -6

Substitute b = -6 in (1).

-6 + 2a = -4

2a = 2

a = 1

x2 + ax + b = x2 + x - 6

Factors of (x2 + x - 6) are (x - 2) and (x + 3).

Therefore,

x3 + 3x2 - 4x - 12 = (x + 2)(x - 2)(x + 3)

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge1.png

Recent Articles

  1. Dilation Transformation

    Feb 07, 26 08:30 PM

    dilation.png
    Dilation Transformation - Concept - Rule - Examples with step by step explanation

    Read More

  2. SAT Math Practice Problems Hard

    Feb 07, 26 07:37 PM

    digitalsatmath423.png
    SAT Math Practice Problems Hard

    Read More

  3. SAT Math Practice Hard Questions

    Feb 07, 26 08:28 AM

    SAT Math Practice Hard Questions

    Read More