HOW TO FACTOR POLYNOMIALS WITH 4 TERMS WITHOUT GROUPING

Let P(x) be a polynomial with four terms.

To factor P(x) without grouping, substitute

x = -1, 1, -2, 2, -3, 3.......

P(-1) = 0 ----> (x + 1) is a factor of P(x)

P(1) = 0 ----> (x - 1) is a factor of P(x)

P(-2) = 0 ----> (x + 2) is a factor of P(x)

P(2) = 0 ----> (x - 2) is a factor of P(x)

If P(-1)  0, then (x + 1) is not a factor of P(x).

Then, try x = 1, x = -2, x = 2 and so on.

Once one of the linear factors of P(x) is found, the other factors can bound easily (the rest of the process has been explained in the following examples).

Factor the following polynomials without grouping :

Example 1 :

x3 - 2x2 - x + 2

Solution :

Let p(x) = x3 - 2x2 - x + 2.

Substitute x = -1.

p(-1) = (-1)3 - 2(-1)2 - (-1) + 2

= -1 - 2(1) + 1 + 2

= -1 - 2 + 1 + 2

= 0

Since P(-1) = 0, (x + 1) is a factor of P(x).

Since P(x) is a cubic polynomial, the other factor can be assumed as (x2 + ax + b).

Then,

(x + 1)((x2 + ax + b) = x3 - 2x2 - x + 2

Comparing the coefficients of x and constants,

b + a = -1 ----(1)

b = 2

Substitute b = 2 in (1).

2 + a = -1

a = -3

x2 + ax + b = x2 - 3x + 2

Factors of (x2 - 3x + 2) are (x - 1) and (x - 2).

Therefore,

x3 - 2x2 - x + 2 = (x + 1)(x - 1)(x - 2)

Example 2 :

x3 + 4x2 + x - 6

Solution :

Let p(x) = x3 + 4x2 + x - 6.

Substitute x = -1.

p(1) = (-1)3 + 4(-1)2 + (-1) - 6

= -1 + 4(1) - 1 - 6

= -1 + 4 - 1 - 6

= -4 ≠ 0

Substitute x = 1.

p(1) = 13 + 4(1)2 + 1 - 6

= 1 + 4 + 1 - 6

= 0

Since P(1) = 0, (x - 1) is a factor of P(x).

Since P(x) is a cubic polynomial, the other factor can be assumed as (x2 + ax + b).

Then,

(x - 1)((x2 + ax + b) = x3 + 4x2 + x - 6

Comparing the coefficients of x and constants,

b - a = 1 ----(1)

-b = -6

b = 6

Substitute b = 6 in (1).

6 - a = 1

-a = -5

a = 5

x2 + ax + b = x2 + 5x + 6

Factors of (x2 + 5x + 6) are (x + 2) and (x + 3).

Therefore,

x3 + 4x2 + x - 6 = (x - 1)(x + 2)(x + 3)

Example 3 :

x3 + 3x2 - 4x - 12

Solution :

Let p(x) = x3 + 3x2 - 4x - 12.

Substitute x = -1.

p(-1) = (-1)3 + 3(-1)2 - 4(-1) - 12

= -1 + 3(1) + 4 - 12

= -1 + 3 + 4 - 12

= -6 ≠ 0

Since P(-1)  0, (x + 1) is not a factor of P(x).

Substitute x = 1.

p(1) = 13 + 3(1)2 - 4(1) - 12

= 1 + 3 - 4 - 12

= -12 ≠ 0

Substitute x = -2.

p(-2) = (-2)3 + 3(-2)2 - 4(-2) - 12

= -8 + 3(4) + 8 - 12

= -8 + 12 + 8 - 12

= 0

Since P(-2) = 0, (x + 2) is a factor of P(x).

Since P(x) is a cubic polynomial, the other factor can be assumed as (x2 + ax + b).

Then,

(x + 2)((x2 + ax + b) = x3 + 3x2 - 4x - 12

Comparing the coefficients of x and constants,

b + 2a = -4 ----(1)2b = -12b = -6

Substitute b = -6 in (1).

-6 + 2a = -4

2a = 2

a = 1

x2 + ax + b = x2 + x - 6

Factors of (x2 + x - 6) are (x - 2) and (x + 3).

Therefore,

x3 + 3x2 - 4x - 12 = (x + 2)(x - 2)(x + 3)

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 32)

    Oct 30, 25 08:57 AM

    digitalsatmath403.png
    10 Hard SAT Math Questions (Part - 32)

    Read More

  2. 10 Hard SAT Math Questions (Part - 31)

    Oct 27, 25 10:32 AM

    10 Hard SAT Math Questions (Part - 31)

    Read More

  3. Time and Work Problems

    Oct 20, 25 07:13 AM

    Time and Work Problems - Concept - Solved Problems

    Read More