Subscribe to our โถ๏ธ YouTube channel ๐ด for the latest videos, updates, and tips.
The following steps will be useful to reduce the given surd to its simplest form.
Step 1 :
Find factors of the number inside the given radical.
Step 2 :
Based on the order of the radical, we have to group them as pairs and factor out.
Step 3 :
In case we already have terms outside the radical, we have to multiply them by the factor taken out and multiply the remaining numbers inside the radical.
Express the following surds in simplest form.
Example 1 :
3โ32
Solution :
3โ32 = 3โ(2 โ 2 โ 2 โ 2 โ 2)
Order of the given radical is 3.
So, we have to factor out one term for every three same terms.
= 23โ(2 โ 2)
= 23โ4
Example 2 :
โ63
Solution :
โ63 = โ(3 โ
3 โ
7)
Order of the given radical is 2.
So, we have to factor out one term for every two same terms.
= 3โ7
Example 3 :
โ243
Solution :
โ243 = โ(3 โ 3 โ 3 โ 3 โ 3)
Order of the given radical is 2.
So, we have to factor out one term for every two same terms.
= (3 โ 3) โ3
= 9โ3
Example 4 :
3โ256
Solution :
3โ256 = 3โ(2 โ 2 โ 2 โ 2 โ 2 โ 2 โ 2 โ 2)
Order of the given radical is 3.
So, we have to factor out one term for every three same terms.
= 2 โ 2 โ 2 โ 2
= 16
Example 5 :
4โ80
Solution :
4โ80 = 4โ(2 โ 2 โ 2 โ 2 โ 5)
Order of the given radical is 4.
So, we have to factor out one term for every four same terms.
= 24โ5
Example 6 :
(2โ3 x 2โ6)/4
Solution :
= (2โ3 x 2โ6)/4
Using the property โa x โb = โ(a x b)
= (4โ(3x6)/4
= (4โ(3 x 3 x 2)/4
= 3โ2
Example 7 :
(โ12 x โ27) / (8 x 2โ6)
Solution :
= (โ12 x โ27) / (8 x 2โ6)
Using the property โa x โb = โ(a x b)
= (โ(12 x 27) / (8 x 2โ6)
= (โ(2โ 2โ 3โ 3โ 3โ 3) / (8 x 2โ6)
= 12 / 16โ6
= 3/4โ6
Rationalizing the denominator, we get
= (3/4โ6) โ (โ6/โ6)
= 3โ6/4(6)
= 3โ6/24
= โ6/8
Example 8 :
(โ2 + 3) (โ2 - 5)
Solution :
= (โ2 + 3) (โ2 - 5)
Using distributive property, we get
= โ2 โ2 + โ2(-5) + 3โ2 - 15
= 2 - 5 โ2 + 3โ2 - 15
= - 2โ2 - 13
Example 9 :
(โ2 + 1)2
Solution :
= (โ2 + 1)2
Using the algebraic identity,
(a + b)2 = a2+ 2ab + b2
(โ2 + 1)2 = โ22+ 2โ2(1) + 12
= 2 + 2โ2 + 1
= 3 + 2โ2
Example 10 :
2โ3 + 4โ3
Solution :
2โ3 + 4โ3
Inside the radical, since we have same values these can be considered as like terms. Combining the like terms, we get
= 6 โ3
Example 11 :
โ27 + โ3
Solution :
= โ27 + โ3
โ27 = โ(3 โ 3 โ 3)
= 3โ3
Example 12 :
โ57 รท โ3
Solution :
= โ57 รท โ3
= โ(3โ 19) รท โ3
= โ3 โ19 รท โ3
= โ19
Example 13 :
โ38 รท โ2
Solution :
= โ38 รท โ2
= โ(2โ 19) รท โ2
= โ2 โ19 รท โ2
= โ19
Example 14 :
5โ90
Solution :
= 5โ90
= 5โ(2โ 5โ 3โ 3)
= (5 โ 3) โ(2โ 5)
= 15 โ10
Example 15 :
2โ75 - โ45 + 2โ20
Solution :
= 2โ75 - โ45 + 2โ20
Decomposing into prime factors, we get
= 2โ(3โ 5โ 5) - โ(3โ 3โ 5) + 2โ(2โ 2โ 5)
= (2โ 5)โ3 - 3โ5 + (2โ 2)โ5
= 6โ3 - 3โ5 + 4โ5
Combining the like terms, we get
= 6โ3 + โ5
Example 16 :
(3โ2)2
Solution :
= (3โ2)2
Distributing the power, we get
= 32โ22
= 9(2)
= 18
Example 17 :
(โ18 x โ2)
Solution :
= (โ18 x โ2)
Decomposing into prime factors, we get
= (โ(3โ 3โ 2) x โ2)
= โ(3โ 3โ 2โ 2)
= 6
Example 18 :
2โ3(3โ2 - โ3)
Solution :
= 2โ3(3โ2 - โ3)
Using distributive property, we get
= 3โ2(2โ3) - โ3 (2โ3)
= 6โ6 - 2(3)
= 6โ6 - 6
Example 19 :
(โ7 - โ3)2
Solution :
= (โ7 - โ3)2
Using algebraic identity, we get
(a - b)2 = a2 - 2ab + b2
= (โ7)2 - 2โ7โ3 - (โ3)2
= 7 - 2โ(7x3) - 3
= 4 - 2โ21
Example 20 :
(2โm + 5)2
Solution :
= (2โm + 5)2
Using algebraic identity, we get
(a + b)2 = a2 + 2ab + b2
= (2โm)2 - 2(2โm)(5) - 52
= 4m - 10โm - 25
It cannot be simplified further, so the answer is
4m - 10โm - 25
Example 21 :
(5โ2 - 3โ3)(5โ2 + 3โ3)
Solution :
= (5โ2 - 3โ3)(5โ2 + 3โ3)
It exactly matches with algebraic identity
(a + b)(a - b) = a2 - b2
Here a = 5โ2 and b = 3โ3
= (5โ2)2(3โ3)2
= 25(2) (3(3))
= 50 (9)
= 450
Example 22 :
(2 + โ3)/(2โ3)
Solution :
= (2 + โ3)/(2โ3)
= [(2 + โ3)/(2โ3)][(2โ3)/(2โ3)]
(2โ3)(2+ โ3)/4(3)
(2โ3)(2+ โ3)/12
= โ3(2+ โ3)/6
Subscribe to our โถ๏ธ YouTube channel ๐ด for the latest videos, updates, and tips.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
ยฉAll rights reserved. onlinemath4all.com
Dec 08, 25 12:12 AM
Dec 05, 25 04:04 AM
Dec 03, 25 07:02 AM