HOW TO EXPRESS A GIVEN SURD TO SIMPLEST FORM

Subscribe to our โ–ถ๏ธ YouTube channel ๐Ÿ”ด for the latest videos, updates, and tips.

The following steps will be useful to reduce the given surd to its simplest form.  

Step 1 :

Find factors of the number inside the given radical.

Step 2 :

Based on the order of the radical, we have to group them as pairs and factor out.

Step 3 :

In case we already have terms outside the radical, we have to multiply them by the factor taken out and multiply the remaining numbers inside the radical.

Express the following surds in simplest form.

Example 1 :

3โˆš32

Solution :

3โˆš32  =  3โˆš(2 โ‹… โ‹… 2 โ‹… 2 โ‹… 2)

Order of the given radical is 3.

So, we have to factor out one term for every three same terms.

  =  23โˆš(2 โ‹… 2)

  =  23โˆš4

Example 2 :

 โˆš63

Solution :

โˆš63  =  โˆš(3 โ‹… 3 โ‹… 7)

Order of the given radical is 2.

So, we have to factor out one term for every two same terms.

  =  3โˆš7

Example 3 :

 โˆš243

Solution :

โˆš243  =  โˆš(3 โ‹… 3 โ‹… 3 โ‹… 3 โ‹… 3)

Order of the given radical is 2.

So, we have to factor out one term for every two same terms.

  =  (3 โ‹… 3) โˆš3

=  9โˆš3

Example 4 :

3โˆš256

Solution :

3โˆš256  =  3โˆš(2 โ‹… โ‹… 2 โ‹… 2 โ‹… 2 โ‹… 2 โ‹… 2 โ‹… 2)

Order of the given radical is 3.

So, we have to factor out one term for every three same terms.

  =  2 โ‹… 2 โ‹… 2 โ‹… 2

=  16

Example 5 :

4โˆš80

Solution :

 4โˆš80  =   4โˆš(2 โ‹… 2 โ‹… 2  โ‹… 2 โ‹… 5)

Order of the given radical is 4.

So, we have to factor out one term for every four same terms.

  =  24โˆš5

Example 6 :

(2โˆš3 x 2โˆš6)/4

Solution :

= (2โˆš3 x 2โˆš6)/4

Using the property โˆša x โˆšb = โˆš(a x b)

= (4โˆš(3x6)/4

= (4โˆš(3 x 3 x 2)/4

= 3โˆš2

Example 7 :

(โˆš12 x โˆš27) / (8 x 2โˆš6)

Solution :

= (โˆš12 x โˆš27) / (8 x 2โˆš6)

Using the property โˆša x โˆšb = โˆš(a x b)

= (โˆš(12 x 27) / (8 x 2โˆš6)

= (โˆš(2โ‹…2โ‹…3โ‹…3โ‹…3โ‹…3) / (8 x 2โˆš6)

= 12 / 16โˆš6

= 3/4โˆš6

Rationalizing the denominator, we get

= (3/4โˆš6) โ‹… (โˆš6/โˆš6)

= 3โˆš6/4(6)

= 3โˆš6/24

= โˆš6/8

Example 8 :

(โˆš2 + 3) (โˆš2 - 5) 

Solution :

= (โˆš2 + 3) (โˆš2 - 5) 

Using distributive property, we get

= โˆš2 โˆš2 + โˆš2(-5) + 3โˆš2 - 15

= 2 - 5 โˆš2 + 3โˆš2 - 15

= - 2โˆš2 - 13

Example 9 :

(โˆš2 + 1)2

Solution :

= (โˆš2 + 1)2

Using the algebraic identity, 

 (a + b)2 = a2+ 2ab + b2

 (โˆš2 + 1)2 = โˆš22+ 2โˆš2(1) + 12

= 2 + 2โˆš2 + 1

= 3 + 2โˆš2

Example 10 :

2โˆš3 + 4โˆš3

Solution :

2โˆš3 + 4โˆš3

Inside the radical, since we have same values these can be considered as like terms. Combining the like terms, we get

= 6 โˆš3

Example 11 :

โˆš27 + โˆš3

Solution :

= โˆš27 + โˆš3

โˆš27 = โˆš(3 โ‹… 3 โ‹… 3)

= 3โˆš3

Example 12 :

โˆš57 รท โˆš3

Solution :

โˆš57 รท โˆš3

= โˆš(3โ‹…19) รท โˆš3 

= โˆš3 โˆš19 รท โˆš3

= โˆš19

Example 13 :

โˆš38 รท โˆš2

Solution :

โˆš38 รท โˆš2

= โˆš(2โ‹…19) รท โˆš2 

= โˆš2 โˆš19 รท โˆš2

= โˆš19

Example 14 :

5โˆš90

Solution :

5โˆš90

= 5โˆš(2โ‹…5โ‹…3โ‹…3)

= (5 โ‹… 3) โˆš(2โ‹…5)

= 15 โˆš10

Example 15 :

2โˆš75 - โˆš45 + 2โˆš20

Solution :

= 2โˆš75 - โˆš45 + 2โˆš20

Decomposing into prime factors, we get

= 2โˆš(3โ‹…5โ‹…5) - โˆš(3โ‹…3โ‹…5) + 2โˆš(2โ‹…2โ‹…5)

= (2โ‹…5)โˆš3 - 3โˆš5 + (2โ‹…2)โˆš5

= 6โˆš3 - 3โˆš5 + 4โˆš5

Combining the like terms, we get

= 6โˆš3 + โˆš5 

Example 16 :

(3โˆš2)2

Solution :

= (3โˆš2)2

Distributing the power, we get

= 32โˆš22

= 9(2)

= 18

Example 17 :

(โˆš18 x โˆš2)

Solution :

= (โˆš18 x โˆš2)

Decomposing into prime factors, we get

= (โˆš(3โ‹…3โ‹…2) x โˆš2)

= โˆš(3โ‹…3โ‹…2โ‹…2)

= 6

Example 18 :

2โˆš3(3โˆš2 - โˆš3)

Solution :

= 2โˆš3(3โˆš2 - โˆš3)

Using distributive property, we get

= 3โˆš2(2โˆš3) - โˆš3 (2โˆš3)

= 6โˆš6 - 2(3)

= 6โˆš6 - 6

Example 19 :

(โˆš7 - โˆš3)2

Solution :

= (โˆš7 - โˆš3)2

Using algebraic identity, we get

 (a - b)2 = a- 2ab + b2

= (โˆš7)2 - 2โˆš7โˆš3 - (โˆš3)2

= 7 - 2โˆš(7x3) - 3

= 4 - 2โˆš21

Example 20 :

(2โˆšm + 5)2

Solution :

= (2โˆšm + 5)2

Using algebraic identity, we get

 (a + b)2 = a+ 2ab + b2

= (2โˆšm)2 - 2(2โˆšm)(5) - 52

= 4m - 10โˆšm - 25

It cannot be simplified further, so the answer is

4m - 10โˆšm - 25

Example 21 :

(5โˆš2 - 3โˆš3)(5โˆš2 + 3โˆš3)

Solution :

(5โˆš2 - 3โˆš3)(5โˆš2 + 3โˆš3)

It exactly matches with algebraic identity

(a + b)(a - b) = a2 - b2

Here a = 5โˆš2 and b = 3โˆš3

= (5โˆš2)2(3โˆš3)2

= 25(2) (3(3))

= 50 (9)

= 450

Example 22 :

(2 + โˆš3)/(2โˆš3)

Solution :

(2 + โˆš3)/(2โˆš3)

= [(2 + โˆš3)/(2โˆš3)][(2โˆš3)/(2โˆš3)]

(2โˆš3)(2+ โˆš3)/4(3)

(2โˆš3)(2+ โˆš3)/12

= โˆš3(2+ โˆš3)/6

Subscribe to our โ–ถ๏ธ YouTube channel ๐Ÿ”ด for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

ยฉAll rights reserved. onlinemath4all.com

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 38)

    Dec 08, 25 12:12 AM

    digitalsatmath416.png
    10 Hard SAT Math Questions (Part - 38)

    Read More

  2. SAT Math Practice

    Dec 05, 25 04:04 AM

    satmathquestions1.png
    SAT Math Practice - Different Topics - Concept - Formulas - Example problems with step by step explanation

    Read More

  3. 10 Hard SAT Math Questions (Part - 37)

    Dec 03, 25 07:02 AM

    digitalsatmath411.png
    10 Hard SAT Math Questions (Part - 37)

    Read More