Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.
Evaluate the following if z = 5 - 2i and w = -1 + 3i.
Example 1 :
z + w
Solution :
z + w = (5 - 2i) + (-1+ 3i)
= (5 - 1) + (-2i + 3i)
= 4 + i
Example 2 :
z − iw
Solution :
z - iw = (5 − 2i) - i(-1+ 3i)
= 5 − 2i + i - 3i2
= 5 − 2i + i - 3(-1)
= 5 − 2i + i + 3
= (5 + 3) + i(-2 + 1)
= 8 - i
Example 3 :
2z + 3w
Solution :
2z + 3w = 2(5 − 2i) + 3(-1+ 3i)
= 10 - 4i - 3 + 9i
= (10 - 3) + i(9 - 4)
= 7 + 5i
Example 4 :
zw
Solution :
zw = (5 − 2i) (-1+ 3i)
= -5 + 15i + 2i - 6i2
= -5 + 15i + 2i - 6(-1)
= (-5 + 6) + i(15 + 2)
= 1 + 17i
Example 5 :
z2 + 2zw+ w2
Solution :
|
z = (5 − 2i) z2 = (5 − 2i)2 = 52 + (2i)2 - 2(5) (2i) = 25 + 4i2 - 20i = 25 + 4(-1) - 20i = 25 - 4 - 20i = 21 - 20i |
w = (-1 + 3i) w2 = (-1 + 3i)2 = (-1)2 + (3i)2 - 2(-1) (3i) = 1 + 9i2 + 6i = 1 + 9(-1) - 6i = 1 + 9 - 6i = 10 - 6i |
z2 + 2zw+ w2 = 21 - 20i + 2 + 2( 1 + 17i) + 10 - 6i
= 21 - 20i + 2 + 34i + 10 - 6i
= (21 + 2 + 10) + i(-20 + 34 - 6)
= 33 + 8i
Example 6 :
(z + w)2
(z + w)2 = (4 + i)2
= 42 + i2 + 2(4)i
= 16 - 1 + 8i
= 15 + 8i
Simplify :
Example 7 :
(4 + 2i) + (-3 – 5i)
Solution :
= (4 + 2i) + (-3 – 5i)
Distributing the positive sign, we get
= 4 + 2i - 3 - 5i
= 4 - 3 + 2i - 5i
= 1 - 3i
Example 8 :
(-3 + 4i) – (5 + 2i)
Solution :
= (-3 + 4i) – (5 + 2i)
Distributing the negative sign, we get
= -3 + 4i - 5 - 2i
= -3 - 5 + 4i - 2i
= -8 + 2i
Example 9 :
(-8 – 7i) – (5 – 4i)
Solution :
= (-8 – 7i) – (5 – 4i)
Distributing the negative sign, we get
= -8 - 7i - 5 + 4i
= -8 - 5 - 7i + 4i
= -13 - 3i
Example 9 :
(3 – 2i)(5 + 4i)
Solution :
= (3 – 2i)(5 + 4i)
Using distributive property,
= 3(5) + 3(4i) - 2i(5) - 2i(4i)
= 15 + 12i - 10i - 8i2
= 15 + 2i - 8(-1)
= 15 + 2i + 8
= 15 + 8 + 2i
= 23 + 2i
Example 10 :
(3 – 4i)2
Solution :
= (3 – 4i)2
Using the algebraic identity (a - b)2 = a2 - 2ab + b2
a = 3 and b = 4i
= 32 - 2(3)(4i) + (4i)2
= 9 - 24i + 42i2
= 9 - 24i + 16(-1)
= 9 - 24i - 16
= 9 - 16 - 24i
= -7 - 24i
Example 10 :
(3 – 2i)(5 + 4i) – (3 – 4i)2
Solution :
= (3 – 2i)(5 + 4i) – (3 – 4i)2
Using distributive property and expanding using algebraic identity, we get
= 3(5) + 3(4i) - 2i(5) - 2i(4i) - [32 - 2(3)(4i) + (4i)2]
= 15 + 12i - 10i - 8i2 - [9 - 24i + 16i2]
= 15 + 2i - 8(-1) - [9 - 24i + 16(-1)]
= 15 + 2i + 8 - [9 - 24i - 16]
= 23 + 2i - [-7 - 24i]
= 23 + 2i + 7 + 24i
= 23 + 7 + 2i + 24i
= 30 + 26i
Example 11 :
Multiply √2 + i into its conjugate.
Solution :
Given complex number is = √2 + i
Conjugate of complex number = √2 - i
Multiplying the complex number and its conjugate, we get
= (√2 + i)(√2 - i)
= √22 - i2
= 2 - (-1)
= 2 + 1
= 3
Example 12 :
Find real x and y , if (x – iy) (3 + 5i) is the conjugate of – 6 – 24i
Solution :
(x – iy) (3 + 5i) is the conjugate of – 6 – 24i
Conjugate of -6-24i is -6 + 24i
(x – iy) (3 + 5i) = -6 + 24i
3x + 5xi - 3yi - 5i2 = -6 + 24i
3x + i(5x - 3y) - 5(-1) = -6 + 24i
3x + 5 + i(5x - 3y) = -6 + 24i
Equating the real and imaginary parts, we get
3x + 5 = -6
3x = -6 - 5
3x = - 11
x = -11/3
5x - 3y = 24
Applying the value of x, we get
5(11/3) - 3y = 24
55/3 - 3y = 24
(55/3) - 24 = 3y
3y = (55 - 72)/3
= -17/3
y = -17/9
So, the values of x and y are -11/3 and -17/9 respectively.
Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Dec 03, 25 07:02 AM
Dec 02, 25 09:27 AM
Nov 28, 25 09:55 AM