Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.
lim θ-->0 (sinθ/θ) = 1
limθ-->0 (1 - cosθ)/θ = 0
limθ-->0 (tanθ)/θ = 1
limx-->0 (sin-1x)/x = 1
limx-->0 (tan-1x)/x = 1
limx-->a [sin(x - a)]/(x - a) = 1
limx-->a [tan(x - a)]/(x - a) = 1
Question 1 :
Evaluate the following limit
lim x -> 0 sin3 (x/2)/ x3
Solution :
lim x -> 0 sin3 (x/2)/ x3 = lim x -> 0 (sin (x/2))3/ x3
In order to match the given question with the formula, let us multiply and divide by 1/8
= lim x -> 0 (sin (x/2))3(1/8)/ x3(1/8)
= (1/8) lim x -> 0 (sin (x/2))3/ (x/2)3
= (1/8) lim x -> 0 [sin (x/2) / (x/2)]3
= 1/8 (1)
= 1/8
Hence the value of lim x -> 0 sin3 (x/2)/ x3 is 1/8.
Question 2 :
Evaluate the following limit
lim x -> 0 sin αx / sin ᵦx
Solution :
= lim x -> 0 sin αx / sin ᵦx
= (lim x -> 0 sin αx) (αx/αx) / (lim x -> 0 sin ᵦx)(ᵦx/ᵦx)
= (αx/ᵦx) (lim x -> 0 sin αx/αx) / (lim x -> 0 sin ᵦx/ᵦx)
= (α/ᵦ) (1)
= α/ᵦ
Hence the value of lim x -> 0 sin αx / sin ᵦx is α/ᵦ.
Question 2 :
Evaluate the following limit
lim x -> 0 tan 2x / sin 5x
Solution :
= lim x -> 0 tan 2x / sin 5x
= lim x -> 0 tan 2x ⋅ (2x/2x) / lim x -> 0 sin 5x ⋅(5x/5x)
= (2x/5x) [(lim x -> 0 tan 2x/2x) / (lim x -> 0 sin 5x/5x)
= (2/5) (1/1)
= 2/5
Hence the value of lim x -> 0 tan 2x / sin 5x is 2/5.
Question 3 :
Evaluate the following limit
lim α -> 0 (sin αn)/ (sin α)m
Solution :
= lim α -> 0 (sin αn) ⋅ (αn/αn) / (sin α ⋅ (α/α))m
= lim α -> 0 (αn/αm) lim α -> 0 (sin αn/αn) /lim α -> 0 (sin α /α)m
= lim α -> 0 (αn/αm)
= lim α -> 0 αn-m
|
If n = m = lim α -> 0 αn-n = 0n - n = 1 |
If m > n = lim α -> 0 αn-m = 0n - m = 0negative value = 0 |
If m < n = lim α -> 0 αn-m = 0n - m = 0positive value = ∞ |
Question 4 :
Evaluate the following limit
lim x -> 0 (sin (a + x) - sin (a - x))/ x
Solution :
= lim x -> 0 (sin (a + x) - sin (a - x)) / x
sin C - sin D = 2 cos ((C + D)/2) sin ((C - D)/2)
= lim x -> 0 (2 cos ((a+x+a-x)/2) sin (a+x-a+x)/2) / x
= lim x -> 0 (2 cos a sin x)/x
= 2 cos a lim x -> 0 (sin x/x)
= 2 cos a (1)
= 2 cos a
Hence the value lim x -> 0 (sin (a + x) - sin (a - x))/ x is 2 cos a.
Question 5 :
Evaluate the following limit
lim x -> 1 sin (x - 1)/(x2 + x - 2)
Solution :
= lim x -> 1 sin (x - 1)/(x2 + x - 2)
Factoring the denominator,
x2 + x - 2 = (x + 2)(x - 1)
= lim x -> 1 sin (x - 1)/(x + 2)(x - 1)
= lim x -> 1 [sin (x - 1)/(x - 1)] lim x -> 1 [1/(x + 2)]
Let θ = x - 1
= lim x -> 1 [sin θ/θ] lim x -> 1 [1/(x + 2)]
= 1 lim x -> 1 [1/(x + 2)]
Applying the limit, we get
= 1/3
Question 6 :
Evaluate the following limit
lim x -> -5 (x2 + 3x - 10) / sin (x + 5)
Solution :
= lim x -> -5 (x2 + 3x - 10) / sin (x + 5)
Factoring the numerator,
= lim x -> -5 (x + 5)(x - 2) / sin (x + 5)
= [lim x -> -5 (x - 2)] [lim x -> -5 (x + 5) / sin (x + 5)]
Let θ = x + 5
= [lim x -> -5 (x - 2)] [lim x -> -5 θ/sin θ]
Applying the limit, we get
= (-5 - 2)] (1)
= -7
Question 7 :
Evaluate the following limit
lim x -> 5 2 tan (x - 5) / (x2 - 6x + 5)
Solution :
= lim x -> 5 2 tan (x - 5) / (x2 - 6x + 5)
Factoring the denominator, we get
= lim x -> 5 2 tan (x - 5) / (x - 5)(x - 1)
= lim x -> 5 2 [sin (x-5)/cos (x-5)] / (x - 5)(x - 1)
= 2 lim x -> 5 [sin (x-5)/(x - 5)] lim x -> 5 [1/cos (x - 5)](x - 1)
= 2 (1) lim x -> 5 [1/cos (x - 5)](x - 1)]
= 2 lim x -> 5 [1/cos (x - 5)](x - 1)]
Applying the limit, we get
= 2 lim x -> 5 [1/cos (5 - 5)](5 - 1)]
= 2 [1/4cos 0]
= 2 [1/4 (1)]
= 2/4
= 1/2
Question 8 :
Evaluate the following limit
lim x -> -3 (x2 + 4x + 3)/5 tan (x + 3)
Solution :
= lim x -> -3 (x2 + 4x + 3)/5 tan (x + 3)
Factoring the numerator, we get
= lim x -> -3 (x + 1)(x + 3)/5 tan (x + 3)
= lim x -> -3 (x + 1)(x + 3)/[5 sin(x + 3) / cos (x + 3)]
= lim x -> -3 [(x + 3)/5sin(x + 3)] [(x + 1)/cos (x + 3)]
= (1/5) lim x -> -3 [(x + 3)/sin(x + 3)] lim x -> -3 [[(x + 1)/cos (x + 3)]
= (1/5) (1) (-3+1)/cos(-3+3)
= (1/5)[-2/cos 0]
= (1/5) (-2/1)
= -2/5
Question 9 :
Evaluate the following limit
lim x ->0 sin 3x/(5x3 - 4x)
Solution :
= lim x ->0 sin 3x/(5x3 - 4x)
Multiplying the numerator and denominator by 3x, we get
= lim x ->0 sin 3x(3x/3x) / (5x3 - 4x)
= lim x ->0 (sin 3x/3x) [3x/(5x3 - 4x)]
= lim x ->0 (sin 3x/3x) lim x ->0[3x/(5x3 - 4x)]
= 1 lim x ->0[3x/x(5x2 - 4)]
= lim x ->0[3/(5x2 - 4)]
Applying the limit, we get
= [3/(5(0)2 - 4)]
= 3/(-4)
= -3/4
Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Nov 28, 25 09:55 AM
Nov 26, 25 09:03 AM
Nov 21, 25 09:03 AM