HOW TO EVALUATE LIMITS WITH TRIG FUNCTIONS

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

lim θ-->0 (sinθ/θ) = 1

limθ-->0 (1 - cosθ)/θ = 0

limθ-->0 (tanθ)/θ = 1

limx-->0 (sin-1x)/x = 1

limx-->0 (tan-1x)/x = 1

limx-->a [sin(x - a)]/(x - a) = 1

limx-->a [tan(x - a)]/(x - a) = 1 

Question 1 :

Evaluate the following limit 

lim  x -> 0 sin3 (x/2)/ x3

Solution :

lim  x -> 0 sin3 (x/2)/ x=  lim  x -> 0 (sin (x/2))3/ x3

In order to match the given question with the formula, let us multiply and divide by 1/8

 =  lim  x -> 0 (sin (x/2))3(1/8)/ x3(1/8)

 =  (1/8) lim  x -> 0 (sin (x/2))3/ (x/2)3

 =  (1/8) lim  x -> 0 [sin (x/2) / (x/2)]3

 =  1/8 (1)

  =  1/8

Hence the value of lim  x -> 0 sin3 (x/2)/ x3 is 1/8.

Question 2 :

Evaluate the following limit 

lim  x -> 0 sin αx / sin x

Solution :

=  lim  x -> 0 sin αx / sin ᵦx

=  (lim  x -> 0 sin αx) (αx/αx) / (lim  x -> 0 sin x)(x/x)

= (αx/x) (lim  x -> 0 sin αx/αx) / (lim  x -> 0 sin x/x)

=  (α/ᵦ) (1)

α/

Hence the value of lim  x -> 0 sin αx / sin ᵦx is α/ᵦ.

Question 2 :

Evaluate the following limit 

lim  x -> 0 tan 2x / sin 5x

Solution :

=  lim  x -> 0 tan 2x / sin 5x

=  lim  x -> 0 tan 2x  (2x/2x) / lim  x -> 0 sin 5x (5x/5x)

=  (2x/5x) [(lim  x -> 0 tan 2x/2x) / (lim  x -> 0 sin 5x/5x)

=  (2/5) (1/1)

=  2/5

Hence the value of lim  x -> 0 tan 2x / sin 5x is 2/5.

Question 3 :

Evaluate the following limit 

lim  α -> 0 (sin αn)/ (sin α)m

Solution :

=  lim  α -> 0 (sin αn⋅ (αn/αn/ (sin α  (α/α))m

 lim  α -> 0 (αn/αmlim  α -> 0 (sin αn/αn/lim  α -> 0 (sin α /α)m

=   lim  α -> 0 (αn/αm

=  lim  α -> 0 αn-m

If n = m

=  lim  α -> 0 αn-n

  =  0n - n

  =  1

If m > n

=  lim  α -> 0 αn-m

  =  0n - m

  =  0negative value

=  0  

If m < n

=  lim  α -> 0 αn-m

  =  0n - m

  =  0positive value

 

Question 4 :

Evaluate the following limit 

lim  x -> 0 (sin (a + x) - sin (a - x))/ x

Solution :

=  lim  x -> 0 (sin (a + x) - sin (a - x)) / x

sin C - sin D  =  2 cos ((C + D)/2) sin ((C - D)/2)

=  lim  x -> 0 (2 cos ((a+x+a-x)/2) sin (a+x-a+x)/2) / x

=  lim  x -> 0 (2 cos a sin x)/x

 2 cos a  lim  x -> 0 (sin x/x)

 2 cos a (1)

=  2 cos a

Hence the value lim  x -> 0 (sin (a + x) - sin (a - x))/ x is 2 cos a.

Question 5 :

Evaluate the following limit 

lim  x -> 1 sin (x - 1)/(x2 + x - 2)

Solution :

= lim  x -> 1 sin (x - 1)/(x2 + x - 2)

Factoring the denominator,

x2 + x - 2 = (x + 2)(x - 1)

= lim  x -> 1 sin (x - 1)/(x + 2)(x - 1)

= lim  x -> 1 [sin (x - 1)/(x - 1)] lim  x -> 1 [1/(x + 2)]

Let  θ = x - 1

= lim  x -> 1 [sin θ/θlim  x -> 1 [1/(x + 2)]

= 1 lim  x -> 1 [1/(x + 2)]

Applying the limit, we get

= 1/3

Question 6 :

Evaluate the following limit 

lim  x -> -5 (x2 + 3x - 10) / sin (x + 5)

Solution :

= lim  x -> -5 (x2 + 3x - 10) / sin (x + 5)

Factoring the numerator,

= lim  x -> -5 (x + 5)(x - 2) / sin (x + 5)

= [lim  x -> -5 (x - 2)] [lim  x -> -5  (x + 5) / sin (x + 5)]

Let  θ = x + 5

= [lim  x -> -5 (x - 2)] [lim  x -> -5 θ/sin θ]

Applying the limit, we get

= (-5 - 2)] (1)

= -7

Question 7 :

Evaluate the following limit 

lim  x -> 5 2 tan (x - 5) / (x2 - 6x + 5)

Solution :

= lim  x -> 5 2 tan (x - 5) / (x2 - 6x + 5)

Factoring the denominator, we get

= lim  x -> 5 2 tan (x - 5) / (x - 5)(x - 1)

= lim  x -> 5 2 [sin (x-5)/cos (x-5)] / (x - 5)(x - 1)

= 2 lim  x -> 5 [sin (x-5)/(x - 5)] lim  x -> 5 [1/cos (x - 5)](x - 1)

= 2 (1) lim  x -> 5 [1/cos (x - 5)](x - 1)]

= 2 lim  x -> 5 [1/cos (x - 5)](x - 1)]

Applying the limit, we get

= 2 lim  x -> 5 [1/cos (5 - 5)](5 - 1)]

= 2 [1/4cos 0]

= 2 [1/4 (1)]

= 2/4

= 1/2

Question 8 :

Evaluate the following limit 

lim  x -> -3 (x2 + 4x + 3)/5 tan (x + 3)

Solution :

= lim  x -> -3 (x2 + 4x + 3)/5 tan (x + 3)

Factoring the numerator, we get

= lim  x -> -3 (x + 1)(x + 3)/5 tan (x + 3)

= lim  x -> -3 (x + 1)(x + 3)/[5 sin(x + 3) / cos (x + 3)]

= lim  x -> -3 [(x + 3)/5sin(x + 3)] [(x + 1)/cos (x + 3)]

= (1/5) lim  x -> -3 [(x + 3)/sin(x + 3)] lim  x -> -3 [[(x + 1)/cos (x + 3)]

= (1/5) (1) (-3+1)/cos(-3+3)

= (1/5)[-2/cos 0]

= (1/5) (-2/1)

= -2/5

Question 9 :

Evaluate the following limit 

lim  x ->0 sin 3x/(5x3 - 4x)

Solution :

= lim  x ->0 sin 3x/(5x3 - 4x)

Multiplying the numerator and denominator by 3x, we get

= lim  x ->0 sin 3x(3x/3x) / (5x3 - 4x)

= lim  x ->0 (sin 3x/3x)  [3x/(5x3 - 4x)]

= lim  x ->0 (sin 3x/3x)  lim  x ->0[3x/(5x3 - 4x)]

= 1 lim  x ->0[3x/x(5x2 - 4)]

lim  x ->0[3/(5x2 - 4)]

Applying the limit, we get

= [3/(5(0)2 - 4)]

= 3/(-4)

= -3/4

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 36)

    Nov 28, 25 09:55 AM

    digitalsatmath409.png
    10 Hard SAT Math Questions (Part - 36)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 7)

    Nov 26, 25 09:03 AM

    Digital SAT Math Problems and Solutions (Part - 7)

    Read More

  3. Hcf and Lcm Word Problems

    Nov 21, 25 09:03 AM

    Hcf and Lcm Word Problems

    Read More