Key Idea :
Let us consider the integration of a function with respect to x. If the derivative of a part of the function is at somewhere of the function and you are able to multiply the derivative along with dx using multiplication, then you can integration the function using substitution.
Consider the following integration.
In the function the power of 'e' is x3. The derivative is x3 is 3x2 and it is being as a part of the function and we will be able to write the 3x2 along with dx using multiplication.
Now substitute a new variable for x3 for which we have the derivative 3x2 being a part of the given function.
Let u = x3.
u = x3
Differentiate with respect to x on both sides.
du/dx = 3x2
Multiply both sides by dx.
du = 3x2dx
In the given integration, substitute x3 = u and 3x2dx = du.
= ∫eudu
= eu + C
Substitute u = x3.
Question 1 :
Integrate the following with respect to x
cot x/log (sin x)
Solution :
= ∫cot x/log (sin x) dx
Let u = log (sin x)
Differentiating with respect to "x"
du/dx = 1/sin x ( cos x)
du = cos x / sin x
du = cot x dx
∫cot x/log (sin x) dx = ∫du/u
= log u + c
= log (log (sin x)) + c
Question 2 :
Integrate the following with respect to x
cosec x/log (tan (x/2))
Solution :
= ∫ [cosec x/log (tan (x/2))] dx
Let u = log (tan x/2)
du = (1/tan (x/2)) ⋅ sec2 (x/2) (1/2) dx
= (cos x/2 / sin x/2) ⋅ (1/cos2 (x/2)) (1/2) dx
= (1 / 2 sin x/2 cos (x/2))dx
= 1/ sin x dx
du = cosec x dx
∫ [cosec x/log (tan (x/2))] dx = ∫ du/u
= log u + c
= log (log tan x/2) + c
Question 3 :
Integrate the following with respect to x
sin 2x / (a2 + b2 sin2x)
Solution :
= ∫ [sin 2x / (a2 + b2 sin2x)] dx
Let u = a2 + b2 sin2x
du = 0 + b2 (2 sin x cos x) dx
du = b2 sin 2x dx
sin 2x dx = du/b2
∫ [sin 2x / (a2 + b2 sin2x)] dx = ∫ (du/b2)/u
= (1/b2) ∫ (1/u) du
= (1/b2) log u + c
= (1/b2) log (a2 + b2 sin2x) + c
Question 4 :
Integrate the following with respect to x
sin-1x/√(1 - x2)
Solution :
= ∫ [sin-1x/√(1 - x2)] dx
Let u = sin-1x
du = (1/√(1 - x2)) dx
∫ [sin-1x/√(1 - x2)] dx = ∫ u du
= u2/2 + c
= (sin-1x)2/2 + c
Question 5 :
Integrate the following with respect to x
√x/(1 + √x)
Solution :
= ∫ [√x/(1 + √x)] dx
Let u = 1 + √x
du = (0 + 1/2√x) dx
2√x du = dx
∫ [√x/(1 + √x)] dx = ∫ [ (u - 1)/u] 2 √x du
= ∫ [ (u - 1)/u] 2 (u - 1) du
= 2 ∫ [ (u - 1)2/u] du
= 2 ∫ [u2 - 2u + 1)/u] du
= 2 [(∫u du) - 2 ∫ du + ∫(1/u) du]
= 2 [u2/2 - 2u + log u] + c
= u2 - 4u + 2log u + c
= (1 + √x)2 - 4(1 + √x) + 2log (1 + √x) + c
Question 6 :
Integrate the following with respect to x
1/(x log x log (log x))
Solution :
= ∫ [1/(x log x log (log x))] dx
Let u = log (log x)
du = (1/log x) (1/x)
du = (1/x log x) dx
∫ [1/(x log x log (log x))] dx = ∫ 1/(x logx) (log (logx))] dx
= ∫ (du/u)
= log u
= log (log (log x)) + c
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Nov 02, 24 11:58 PM
Oct 30, 24 10:07 AM
Oct 29, 24 06:24 AM