x = r cos θ
y = r sin θ
x2 + y2 = r2
Convert each rectangular equation to polar form.
Example 1 :
x = 3
Solution :
x = 3
Substitute x = r cos θ.
r cos θ = 3
Divide both sides by cos θ.
Example 2 :
x2 + y2 = 16
Solution :
x2 + y2 = 16
Substitute r2 for x2 + y2.
r2 = 16
Take square root on both sides.
r = ±4
Example 3 :
3x + 5y = 7
Solution :
3x + 5y = 7
Substitute r cos θ for x and r sin θ for y.
3r cos θ + 5r sin θ = 7
r(3 cos θ + 5 sin θ) = 7
Divide both sides by (3 cos θ + 5 sin θ).
Example 4 :
x2 = 5y
Solution :
x2 = 5y
Substitute r cos θ for x and r sin θ for y.
(r cos θ)2 = 5(r sin θ)
r2 cos2 θ = 5r sin θ
Divide both sides by r cos2 θ.
Example 5 :
x2 + y2 = 8y
Solution :
x2 + y2 = 8y
Substitute r2 for x2 + y2 and r sin θ for y.
r2 = 8r sin θ
Divide both sides by r.
r = 8 sin θ
r cos θ = x
r sin θ = y
r2 = x2 + y2
Convert each polar equation to rectangular form.
Example 6 :
θ = 60°
Solution :
θ = 60°
Take tan on both sides.
tan θ = tan 60°
tan θ = √3
Example 7 :
r = -sec θ
Solution :
r = -sec θ
r cos θ = -1
Substitute x for r cos θ.
x = -1
Example 8 :
Solution :
Multiply both sides by (4cos θ + 6sin θ).
r(4cos θ + 6sin θ) = 5
4r cos θ + 6r sin θ = 5
Substitute x for r cos θ and y for r sin θ.
4x + 6y = 5
Example 9 :
Solution :
Multiply both sides by (1 - cos θ).
r(1 - cos θ) = 1
r - r cos θ = 1
x2 + y2 = x2 + 2x + 1
Subtract x2 from both sides.
y2 = 2x + 1
Example 10 :
Solution :
Multiply both sides by (2 - sin θ).
r(2 - sin θ) = 6
2r - r sin θ = 6
4(x2 + y2) = y2 + 12y + 36
4x2 + 4y2 = y2 + 12y + 36
4x2 + 3y2 - 12y - 36 = 0
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
May 21, 25 01:19 PM
May 21, 25 05:33 AM
May 20, 25 06:56 AM