# HOW TO CHECK THE CONTINUITY OF A FUNCTION AT A POINT

## About "How to Check the Continuity of a Function at a Point"

How to Check the Continuity of a Function at a Point :

Here we are going to see how to find the continuity of a function at a given point.

In order to check if the given function is continuous at the given point x = x0, it has to satisfy the conditions given below.

(i)  lim x -> x0+  f(x) exists

(ii)  lim x -> x0-  f(x) exists

(iii)  lim x-> x0+ f(x)  =  lim x -> x0-  =  L

Question 1 :

At the given point x0 discover whether the given function is continuous or discontinuous citing the reasons for your answer :

Solution :

f(x)  =  (x2 - 1)/(x - 1)

=  (x - 1) (x + 1)/(x - 1)

f(x)  =  (x + 1)

lim x->1- f(x)  =  1 + 1  =  2     ------(1)

lim x->1f(x)  =  1 + 1  =  2    ------(2)

f(1)  =  2    ------(3)

lim x->1f(x)  =  lim x->1f(x)  =  f (1)

Hence the function is continuous at the point x0 = 1.

Question 2 :

Solution :

f(x)  =  (x2 - 9)/(x - 3)

=  (x - 3) (x + 3)/(x - 3)

f(x)  =  (x + 3)

lim x->3f(x)  =  3 + 3  =  6     ------(1)

lim x->3f(x)  =  3 + 3  =  6    ------(2)

f(3)  =  5    ------(3)

lim x->3f(x)  =  lim x->3f(x)  ≠  f (3)

Hence the function is not continuous at the point x0 = 3.

Question 3 :

Show that the function

is continuous on (- ∞, ∞).

Solution :

f(x)  =  (x3 - 1)/(x - 1)

=  (x - 1) (x2 + x + 1)/(x - 1)

f(x)  =  (x2 + x + 1)

lim x->1f(x)  =  12 + 1 + 1

=  3     ------(1)

lim x->1f(x)  =  12 + 1 + 1

=  3     ------(2)

f(1)  =  3    ------(3)

lim x->1f(x)  =  lim x->1f(x)  =  f (1)

Hence the function is not continuous at the point x0 = 1.

Question 4 :

For what value of a is this function f(x) =

continuous at x = 1 ?

Solution :

If the given function is continuous at a point x->a, then

lim x->a- f(x)  =  lim x->a+ f(x)  =  lim x->af(x)

f(x)  =  (x4 - 1) / (x - 1)

=  ((x2)2 - 1) / (x - 1)

=  (x2+ 1)(x2 - 1) / (x - 1)

=  (x2+ 1)(x + 1)(x - 1) / (x - 1)

f(x)  =  (x+ 1)(x + 1)

lim x->1-  f(x)  =  (1+ 1)(1 + 1)  =  4  ---(1)

lim x->1+  f(x)  =  (1+ 1)(1 + 1)  =  4 ---(2)

lim x->1 f(x)  = a ---(3)

(1)  =  (2)  =  (3)

4 = 4 = a

Hence the value of a is 4.

After having gone through the stuff given above, we hope that the students would have understood, "How to Check the Continuity of a Function at a Point"

Apart from the stuff given in "How to Check the Continuity of a Function at a Point", if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

## Recent Articles

1. ### SAT Math Videos

May 22, 24 06:32 AM

SAT Math Videos (Part 1 - No Calculator)

2. ### Simplifying Algebraic Expressions with Fractional Coefficients

May 17, 24 08:12 AM

Simplifying Algebraic Expressions with Fractional Coefficients