The sum, difference product and quotient are defined for real functions only on their common domain. These operations do not make any sense for general functions even if their domains are same because the sum, difference, product and quotient may or may not meaningful for the elements in their common domain.
Example 1 :
Let f and g be two real functions defined by
f(x) = √(x + 2) and g(x) = √(4 - x2)
(i) f + g (ii) f - g (iii) fg (iv) f/g (v) ff (vi) gg.
Solution :
(i) f + g
f + g = (f + g)(x)
= f(x) + g(x)
= √(x + 2) + √(4 - x2)
(ii) f - g
f - g = (f - g)(x)
= f(x) - g(x)
= √[(x + 2) - √(4 - x2)]
(iii) fg
fg= fg(x)
= f(x)g(x)
= √(x + 2)√(4 - x2)
= √[(x + 2)(4 - x2)]
= √[(x + 2)(2 - x)(2 + x)]
= √[(x + 2)2(2 - x)]
= (x + 2)√(2 - x)
(iv) f/g
f/g = (f/g)(x)
= f(x)/g(x)
= √(x + 2)/√(4 - x2)]
= √(x + 2)/√[(2 + x) (2 - x)]
= 1/√(2 - x)
(v) ff
ff(x) = f(x)f(x)
= √(x + 2)√(x + 2)
= (x + 2)
(vi) gg
gg(x) = g(x)g(x)
= √(4 - x2)√(4 - x2)
= (4 - x2)
Example 2 :
Given
f(x) = x – 3 ; g(x) = 2x2 – 5x – 3 ; h(x) = 4x ; j(x) = 4x2 + 12x
find each function.
a) (f + g)(x)
b) (g + j)(x)
c) (h + f)(7)
d) (j - g)(x)
e) (h - f)(-3)
f) (f • j)(-1)
h) (f • g) (x)
i) (g ∘ f)(x)
Solution :
f(x) = x – 3 ; g(x) = 2x2 – 5x – 3 ; h(x) = 4x ; j(x) = 4x2 + 12x
a) (f + g)(x) = f(x) + g(x)
= x - 3 + 2x2 – 5x – 3
= 2x2 – 5x + x - 3 – 3
= 2x2 - 4x- 6
b) (g + j)(x) = g(x) + j(x)
= 2x2 – 5x – 3 + 4x2 + 12x
= 2x2 + 4x2 – 5x + 12x – 3
= 6x2 + 7x – 3
c) (h + f)(7) = h(7) + f(7)
(h + f)(x) = h(x) + f(x)
= 4x + x - 3
(h + f)(x) = 5x - 3
Applying the value of x, we get
(h + f)(7) = 5(7) - 3
= 35 - 3
= 32
d) (j - g)(x) = j(x) - g(x)
= 4x2 + 12x - (2x2 – 5x – 3)
= 4x2 + 12x - 2x2 + 5x + 3
= 4x2 - 2x2 + 12x + 5x + 3
= 2x2 + 17x + 3
e) (h - f)(-3)
(h - f)(x) = h(x) - f(x)
= 4x - (x - 3)
= 4x - x + 3
(h - f)(x) = 3x + 3
(h - f)(-3) = 3(-3) + 3
= -9 + 3
= -6
f) (f • j)(-1)
(f • j)(x) = f(x) • j(x)
= (x - 3) (4x2 + 12x)
= 4x3 + 12x2 - 12x2 - 36x
(f • j)(x) = 4x3 - 36x
(f • j)(x) = 4(-1)3 - 36(-1)
= 4(-1) + 36
= -4 + 36
= 32
h) (f • g) (x) = f(x) • g(x)
= (x - 3) (2x2 – 5x – 3)
i) (g ∘ f)(x) = g[f(x)]
= g[x -3]
applying x - 3 in the place of x in the function g(x), we get
= 2(x - 3)2 – 5(x - 3) – 3
= 2(x2 - 6x + 9) - 5x + 15 - 3
= 2x2 - 11x + 18 - 5x + 15 - 3
= 2x2 - 16x + 15
Example 3 :
Which of the following represents (g • f) (5),
if f(x) = -13-x2 and g(x) = -14 ?
a) 168 b) 532 c) 494 d) 196
Solution :
To find (g • f) (5), we have to evaluate (g • f) (x).
Given that, f(x) = -13-x2 and g(x) = -14
(g • f) (5) = g(5) f(5)
Evalauting g(5), we get
g(5) = -14
Evalauting f(5), we get
f(5) = -13 - 52
= -13 - 25
= -38
g(5) f(5) = -14(-38)
= 532
So, the answer is 532.
Example 4 :
A function f satisfies f(2) = 3 and f(3) = 5.A function g satisfies g(3) = 2 and g(5) = 6. What is the value of f(g (3)) ?
a) 2 b) 3 c) 5 d) 6
Solution :
f(g (3)) = f[g(3)]
Applying the value of g(3), we get
= f[2]
Applying the value of f(2), we gtet
= 3
So, the answer is option b.
g(x) = ax2 + 24
For the following g defined above, a is constant and g(-4) = 8. What is the value of g(-4) ?
a) 8 b) 0 c) -1 d) -8
g(4) = 8
First let us apply a = 4, we get
g(4) = a(4)2 + 24
8 = 16a + 24
8 - 24 = 16a
16a = -16
a = -1
Applying the value of a, we get
g(x) = -x2 + 24
g(-4) = -(-4)2 + 24
= -16 + 24
= 8
So, the answer is option a.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Jul 19, 25 01:24 AM
Jul 18, 25 08:13 AM
Jul 17, 25 10:33 AM