HOW TO ADD SUBTRACT MULTIPLY AND DIVIDE TWO FUNCTIONS

The sum, difference product and quotient are defined for real functions only on their common domain. These operations do not make any sense for general functions even if their domains are same because the sum, difference, product and quotient may or may not meaningful for the elements in their common domain.

Example 1 :

Let f and g be two real functions defined by

f(x) = √(x + 2) and g(x) = √(4 - x2)

(i) f + g  (ii)  f - g  (iii)  fg  (iv)  f/g  (v)  ff  (vi)  gg.

Solution :

(i) f + g

f + g = (f + g)(x)

= f(x) + g(x)

= √(x + 2) + √(4 - x2)

(ii) f - g

f - g = (f - g)(x)

= f(x) - g(x)

= √[(x + 2) - √(4 - x2)]

(iii) fg

fg= fg(x)

= f(x)g(x)

= √(x + 2)√(4 - x2)

= √[(x + 2)(4 - x2)]

= √[(x + 2)(2 - x)(2 + x)]

  = √[(x + 2)2(2 - x)]

= (x + 2)√(2 - x)

(iv) f/g

f/g = (f/g)(x)

= f(x)/g(x)

√(x + 2)/√(4 - x2)]

√(x + 2)/√[(2 + x) (2 - x)]

 = 1/√(2 - x)

(v) ff

ff(x) = f(x)f(x)

√(x + 2)√(x + 2)

= (x + 2)

(vi) gg

gg(x) = g(x)g(x)

√(4 - x2)√(4 - x2)

= (4 - x2)

Example 2 :

Given

f(x) = x – 3 ; g(x) = 2x2 – 5x – 3 ; h(x) = 4x ; j(x) = 4x2 + 12x

find each function.

a) (f + g)(x)

b)  (g + j)(x)

c)  (h + f)(7)

d)  (j - g)(x)

e)  (h - f)(-3)

f) (f • j)(-1)

h) (f • g) (x)

i) (g ∘ f)(x)

Solution :

f(x) = x – 3 ; g(x) = 2x2 – 5x – 3 ; h(x) = 4x ; j(x) = 4x2 + 12x

a) (f + g)(x) = f(x) + g(x)

= x - 3 + 2x2 – 5x – 3

2x2 – 5x + x - 3 – 3

= 2x2 - 4x- 6

b)  (g + j)(x) = g(x) + j(x)

2x2 – 5x – 3 + 4x2 + 12x

= 2x2 + 4x– 5x + 12x – 3

= 6x2 + 7x – 3

c)  (h + f)(7) = h(7) + f(7)

(h + f)(x) = h(x) + f(x)

= 4x + x - 3

(h + f)(x) = 5x - 3

Applying the value of x, we get

(h + f)(7) = 5(7) - 3

= 35 - 3

= 32

d)  (j - g)(x) = j(x) - g(x)

= 4x2 + 12x - (2x2 – 5x – 3)

= 4x2 + 12x - 2x2 + 5x + 3

= 4x2 - 2x+ 12x + 5x + 3

= 2x2 + 17x + 3

e)  (h - f)(-3) 

(h - f)(x) = h(x) - f(x)

4x - (x - 3)

= 4x - x + 3

(h - f)(x) = 3x + 3

(h - f)(-3) = 3(-3) + 3

= -9 + 3

= -6

f) (f • j)(-1)

(f • j)(x) = f(x) • j(x)

 (x - 3) (4x2 + 12x)

= 4x3 + 12x2 - 12x2 - 36x

(f • j)(x) = 4x3 - 36x

(f • j)(x) = 4(-1)3 - 36(-1)

= 4(-1) + 36

= -4 + 36

= 32

h) (f • g) (x) = f(x) • g(x)

= (x - 3) (2x2 – 5x – 3)

i) (g ∘ f)(x) = g[f(x)]

= g[x -3]

applying x - 3 in the place of x in the function g(x), we get

2(x - 3)2 – 5(x - 3) – 3

= 2(x2 - 6x + 9) - 5x + 15 - 3

= 2x2 - 11x + 18 - 5x + 15 - 3

= 2x2 - 16x + 15

Example 3 :

Which of the following represents (g • f) (5),

if f(x) = -13-x2 and g(x) = -14 ?

a)  168     b)  532     c)  494    d) 196

Solution :

To find (g • f) (5), we have to evaluate (g • f) (x).

Given that, f(x) = -13-x2 and g(x) = -14

(g • f) (5) = g(5) f(5)

Evalauting g(5), we get 

g(5) = -14

Evalauting f(5), we get 

f(5) = -13 - 52

= -13 - 25

= -38

g(5) f(5) = -14(-38)

= 532

So, the answer is 532.

Example 4 :

A function f satisfies f(2) = 3 and f(3) = 5.A function g satisfies g(3) = 2 and g(5) = 6. What is the value of f(g (3)) ?

a) 2    b) 3   c) 5    d) 6

Solution :

f(g (3)) = f[g(3)]

Applying the value of g(3), we get

= f[2]

Applying the value of f(2), we gtet

= 3

So, the answer is option b.

g(x) = ax2 + 24

For the following g defined above, a is constant and g(-4) = 8. What is the value of g(-4) ?

a) 8      b)  0      c)  -1     d) -8

g(4) = 8

First let us apply a = 4, we get

g(4) = a(4)2 + 24

8 = 16a + 24

8 - 24 = 16a 

16a = -16

a = -1

Applying the value of a, we get

g(x) = -x2 + 24

g(-4) = -(-4)2 + 24

= -16 + 24

= 8

So, the answer is option a.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 220)

    Jul 19, 25 01:24 AM

    digitalsatmath308.png
    Digital SAT Math Problems and Solutions (Part - 220)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 219)

    Jul 18, 25 08:13 AM

    digitalsatmath306.png
    Digital SAT Math Problems and Solutions (Part - 219)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 218)

    Jul 17, 25 10:33 AM

    digitalsatmath303.png
    Digital SAT Math Problems and Solutions (Part - 218)

    Read More