HOW TO ADD SUBTRACT MULTIPLY AND DIVIDE COMPLEX NUMBERS

Let z1 and z2 be two complex numbers such that

z1 = x1 + iy1 and z2 = x2 + iy2,

where x1, x2, y1 and y2 are real values.

Addition of Complex Numbers

z1 + z2 = (x1 + iy1) + (x2 + iy2)

x1 + x2 + iy+ iy2

= (x1 + x2) + i(y+ y2)

Subtraction of Complex Numbers

z1 - z2 = (x1 + iy1) - (x2 + iy2)

 = x1 + iy1 - x2 - iy2

= x1 - x2 + iy1 - iy2

= (x1 - x2) + i(y- y2)

Multiplication of Complex Numbers

z1z2 = (x1 + iy1)(x2 + iy2)

= x1x2 + ix1y2 + ix2y+ i2y1y2

= x1x2 + i(x1y2 + x2y1) + (-1)y1y2

= x1x2 + i(x1y2 + x2y1) - y1y2

= (x1x2  - y1y2) + i(x1y2 + x2y1)

Division of Complex Numbers

Two complex numbers x + iy and x - iy are conjugates to each other. The conjugate is useful in division of complex numbers. The complex number can be replaced with a real number in the denominator by multiplying the numerator and denominator by the conjugate of the denominator.

This process is similar to rationalizing the denominator to remove surds.

In each of the following examples, write the expression in the form a + bi, where a and b are real numbers.

Example 1 :

(4 + 2i) + (3 + 8i)

Solution :

= (4 + 2i) + (3 + 8i)

(4 + 3) + (2i + 8i)

= 7 + 10i

Example 2 :

(5 + 7i) + (4 + 6i)

Solution :

= (5 + 7i) + (4 + 6i)

= (5 + 4) + (7i + 6i)

= 9 + 15i

Example 3 :

(5 + 3i) - (2 + 9i)

Solution :

(5 + 3i) - (2 + 9i)

= 5 + 3i - 2 - 9i

= 3 - 6i

Example 4 :

(9 + 2i) - (6 + 7i)

Solution :

= (9 + 2i) - (6 + 7i)

= 9 + 2i - 6 - 7i

= 3 - 5i

Example 5 :

(9 + 2i) - (6 + 7i)

Solution :

= (9 + 2i) - (6 + 7i)

= 9 + 2i - 6 - 7i

= 3 - 5i

Example 6 :

(8 - 4i)(2 - 3i)

Solution :

= (8 - 4i)(2 - 3i)

= 16 - 24i - 8i + 12i2

= 16 - 32i + 12(-1)

= 16 - 32i - 12

= 4 - 32i

Example 7 :

(2 + 3i)(1 - 4i)

Solution :

= (2 + 3i)(1 - 4i)

= 2 - 8i + 3i - 12i2

= 2 - 5i - 12(-1)

= 2 - 5i + 12

= 14 - 5i

Example 8 :

Solution :

Example 9 :

Solution :

Example 10 :

Find the values of the real numbers x and y, if the following two complex numbers are equal.

(3 - i)x - (2 - i)y + 2i + 5 and 2x + (-1 + 2i)y + 3 + 2i

Solution :

(3 - i)x - (2 - i)y + 2i + 5 = 2x + (-1 + 2i)y + 3 + 2i

3x - ix - 2y + iy + 2i + 5 = 2x - y + 2yi + 3 + 2i

3x - 2y + 5 - ix + iy + 2i = 2x - y + 3 + 2yi + 2i

(3x - 2y + 5) + i(-x + y + 2) = (2x - y + 3) + i(2y + 2)

The complex numbers sides are in standard form a + ib on both sides.

Equating the real parts and imaginary parts,

3x - 2y + 5 = 2x - y + 3

x - y + 2 = 0 ----(1)

-x + y + 2 = 2y + 2

-x - y = 0 ----(2)

(1) + (2) :

-2y + 2 = 0

-2y = -2

y = 1

Substitute y = 1 in (2).

-x - 1 = 0

-x = 1

x = -1

Therefore,

x = -1 and y = 1

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Writing Quadratic Functions in Standard Form

    Apr 26, 24 12:39 PM

    Writing Quadratic Functions in Standard Form or Vertex Form

    Read More

  2. Factoring Quadratic Trinomials

    Apr 26, 24 01:51 AM

    Factoring Quadratic Trinomials - Key Concepts - Solved Problems

    Read More

  3. Factoring Trinomials Worksheet

    Apr 25, 24 08:40 PM

    tutoring.png
    Factoring Trinomials Worksheet

    Read More