## HCF OF TWO POLYNOMIALS BY DIVISION METHOD

HCF of two polynomials by division method  :

Sometimes the given polynomials are not factorable because of their highest powers. However, the following method gives a systematic way on finding HCF.

Step 1 :

Let " f(x) " and " g(x) " be the given polynomials. First, divide f(x) by g(x) to obtain, f(x) = g(x) x q(x) + r (x)

So, deg [ g(x) ] > deg [ r(x) ]. If remainder r (x) = 0, then g(x) is the HCF of given polynomials.

Step 2 :

If the remainder r(x) is not zero, then divide g(x) by r(x) to obtain g(x) = r(x) x q(x) + r (x).

Where  r (x) is remainder. If it is zero, then r(x) is the required HCF.

Step 2 :

If it is not zero, then continue the process until we get zero as remainder.

Question 1 :

Find the HCF of the following pairs of polynomials using division algorithm

x³ - 9 x² + 23 x - 15 ,  4 x² - 16 x + 12

Solution :

Let f (x) = x³ - 9 x² + 23 x - 15, g (x) = 4 x² - 16 x + 12

g (x)  =  4 (x² - 4 x + 3)

Since the remainder is 0, HCF of given polynomials is x - 5

Question 2 :

Find the HCF of the following pairs of polynomials using division algorithm

3 x³ + 18 x² + 33 x + 18 ,  3 x² + 13 x + 10

Solution:

f (x) = 3 x³ + 18 x² + 33 x + 18

g (x) = 3 x² + 13 x + 10

The remainder is not zero. So, we have to repeat this long division once again.

here r (x) = (4/3)(x+1)

Now we are taking 4/3 as common from the remainder. So that we are getting (4/3)(x+1)

Therefore HCF is x + 1

Question 3 :

Find the HCF of the following pairs of polynomials using division algorithm

2 x³ + 2 x² + 2 x + 2 ,  6 x³ + 12 x² + 6 x + 12

Solution:

f (x) = 2 (x³ + x² + x + 1)

g (x) = 6 (x³ + 2 x² + x + 2)

We factor 2 from f (x) and 6 from g (x)

The remainder is not zero. So, we have to repeat this long division once again

Therefore HCF is 2 (x² + 1)

Question 4 :

Find the HCF of the following pairs of polynomials using division algorithm

x³ - 3 x² + 4 x - 12 , x⁴ + x³ + 4 x² + 4 x

Solution :

f (x) = x³ - 3 x² + 4 x - 12

g (x) = x (x³ + x² + 4 x + 4)

We are taking x from g (x).

The remainder is not zero. So, we have to repeat this long division once again

Therefore HCF is (x² + 4)

After having gone through the stuff given above, we hope that the students would have understood "Hcf of two polynomials by division method".

Apart from the stuff given above, if you want to know more about "Hcf of two polynomials by division method", please click here

Apart from the stuff, "Hcf of two polynomials by division method", if you need any other stuff in math, please use our google custom search here.

WORD PROBLEMS

HCF and LCM  word problems

Word problems on simple equations

Word problems on linear equations

Algebra word problems

Word problems on trains

Area and perimeter word problems

Word problems on direct variation and inverse variation

Word problems on unit price

Word problems on unit rate

Word problems on comparing rates

Converting customary units word problems

Converting metric units word problems

Word problems on simple interest

Word problems on compound interest

Word problems on types of angles

Complementary and supplementary angles word problems

Double facts word problems

Trigonometry word problems

Percentage word problems

Profit and loss word problems

Markup and markdown word problems

Decimal word problems

Word problems on fractions

Word problems on mixed fractrions

One step equation word problems

Linear inequalities word problems

Ratio and proportion word problems

Time and work word problems

Word problems on sets and venn diagrams

Word problems on ages

Pythagorean theorem word problems

Percent of a number word problems

Word problems on constant speed

Word problems on average speed

Word problems on sum of the angles of a triangle is 180 degree

OTHER TOPICS

Profit and loss shortcuts

Percentage shortcuts

Times table shortcuts

Time, speed and distance shortcuts

Ratio and proportion shortcuts

Domain and range of rational functions

Domain and range of rational functions with holes

Graphing rational functions

Graphing rational functions with holes

Converting repeating decimals in to fractions

Decimal representation of rational numbers

Finding square root using long division

L.C.M method to solve time and work problems

Translating the word problems in to algebraic expressions

Remainder when 2 power 256 is divided by 17

Remainder when 17 power 23 is divided by 16

Sum of all three digit numbers divisible by 6

Sum of all three digit numbers divisible by 7

Sum of all three digit numbers divisible by 8

Sum of all three digit numbers formed using 1, 3, 4

Sum of all three four digit numbers formed with non zero digits

Sum of all three four digit numbers formed using 0, 1, 2, 3

Sum of all three four digit numbers formed using 1, 2, 5, 6