GRAPHING POLAR EQUATIONS

Let P be the rectangular coordinate in the form (x, y), we should convert it into the form of (r, θ).

Then,

r2  =  x2 + y2

Let us see some example problems to understand how to graph the given polar equations.

Example 1 :

Graph each of the following polar equations. Convert to rectangular coordinates, if possible.

(a)  r  =  3   (b) θ  =  π/6    (c) r sinθ  =  2    (d)  r  =  sec θ

Solution :

(a)  r  =  3

r is the directed distance from origin.

(b) θ  =  π/6

Angle formed in the positive along x axis.

(c) r sinθ  =  2

Since r sinθ  =  x

By replacing r sinθ by x, we get

x  =  2

It is a straight line which is at 2 units distance from the origin.

(d)  r  =  sec θ

r/sec θ  =  1

r cos θ  =  1

x  =  1

Example 2 :

Consider the equation r(θ)  =  2 sinθ 

Solution :

(a)

If θ  =  0

r(θ)  =  2 sinθ 

r(0)  =  2 sin0

r(0)  =  0

If θ  =  π/6

r(π/6) = 2 sinπ/6 

r(π/6)  =  2(1/2)

r(π/6)  =  1

If θ  =  π/3

r(π/3) = 2 sinπ/3 

r(π/3)  = 1.732

If θ  =  π/2

r(π/2) = 2 sinπ/2 

r(π/2)  = 2

If θ  =  2π/3

r(2π/3) = 2 sin 2π/3 

r(π/3)  = 1.732

If θ  =  5π/6

r(5π/6) = 2 sin 5π/6 

r(5π/6)  = 1

If θ  =  π

r(π)  =  2sin π 

r(π)  =  0

(b)  Sketch the equation again but this time in terms of y vs x.

(c)  If the domain is changed as [0, 2π], the graph will be same.

Example 3 :

Graph each polar equation then convert it into rectangular form.

(a)  1  =  r sin θ    (b)  r  =  -3/cos θ

Solution :

r  =  1/sin θ

If θ  =  30, r  =  2

If θ  =  45, r  =  √2

If θ  =  60, r  =  2/√3

Converting the given into rectangular form :

Polar Equation  :

1  =  r sinθ

r sinθ  =  x

Rectangular form :

y  =  1

(b)  r  =  -3/cos θ

Solution :

r  =  -3/cos θ

If θ  =  0, r  =  -3

If θ  =  30, r  =  -2√3

If θ  =  45, r  =  -3√2

If θ  =  60, r  =  -6

Converting the given into rectangular form :

Polar Equation  :

r  =  -3/cosθ

r cos  =  -3

Rectangular form :

x  =  -3

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 168)

    May 23, 25 07:42 PM

    Digital SAT Math Problems and Solutions (Part - 168)

    Read More

  2. Precalculus Problems and Solutions (Part - 14)

    May 23, 25 07:15 PM

    Precalculus Problems and Solutions (Part - 14)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 167)

    May 22, 25 09:59 AM

    digitalsatmath211.png
    Digital SAT Math Problems and Solutions (Part - 167)

    Read More