GRAPH AND SOLVE QUADRATIC INEQUALITIES WORKSHEET

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Problem 1 :

Graph and solve for x :

x² - 7x + 6 > 0

Problem 2 : 

Graph and solve for x : 

 -x² + 3x - 2 > 0

Problem 3 :

Graph and solve for x :

4x² - 25      0

Problem 4 :

Graph and solve for x :

2x² − 12x + 50 ≤ 0

Solutions

Problem 1 :

Graph and solve for x :

x² - 7x + 6 > 0

Solution :

x² - 7x + 6 > 0

(x - 1)(x - 6) > 0

On equating the factors to zero, we see that x = 1, x = 6 are the roots of the quadratic equation. Plotting these roots on real line and marking positive and negative alternatively from the right most part we obtain the corresponding number line as

If we plot these points on the number line, we will get intervals (-∞, 1) (1, 6) (6, ∞).

From (-∞, 1) let us take -1

 (-1 − 1) (-1 − 6) > 0

-2(-7) > 0

14 > 0 True 

From (1, 6) let us take 4

(4 − 1) (4 − 6) > 0

3(-2) > 0

-6 > 0 False

From (6, ) let us take 7

 (7 − 1) (7 − 6) > 0

6(1) > 0

6 > 0 True

Hence, the solution set is 

(− ∞, 1) ∪ (6, ∞)

Problem 2 : 

Graph and solve for x : 

 -x² + 3x - 2 > 0

Solution :

-x² + 3x - 2 > 0

Multiplying by negative sign on both sides 

x²- 3x + 2 < 0

 (x − 1) (x − 2) < 0

x - 1 = 0    x - 2 = 0

x = 1 and x = 2

On equating the factors to zero, we see that x = 1, x = 2 are the roots of the quadratic equation. Plotting these roots on real line and marking positive and negative alternatively from the right most part we obtain the corresponding number line as

If we plot these points on the number line, we will get intervals (-∞, 1) (1, 2) (2, ∞).

From (-∞, 1) let us take -1

  (x − 1) (x − 2) < 0

 (-1 − 1) (-1 − 2) < 0

(-2)(-3) > 0

6 < 0 False

From (1, 2) let us take 1.5

 (x − 1) (x − 2) < 0

 (1.5 − 1) (1.5 − 2) < 0

(-0.5)(-0.5) > 0

0.25 < 0 True 

From (2, ) let us take 7

 (7 − 1) (7 − 6) > 0

6(1) > 0

6 > 0 False

Hence, the solution set is 

(1, 2)

Problem 3 :

Graph and solve for x :

4x² - 25      0

Solution :

4x² - 25      0 

(2x)² - 5²    0 

(2x - 5) (2x + 5)     0 

2x - 5     0  (or)    2x + 5     0 

x =  5/2   (or)   x  =   -5/2

On equating the factors to zero, we see that x = 5/2, x = -5/2 are the roots of the quadratic equation. Plotting these roots on real line and marking positive and negative alternatively from the right most part we obtain the corresponding number line as

If we plot these points on the number line, we will get intervals (-∞, -5/2) (-5/2, 5/2) (5/2, ∞).Graph solutions to quadratic inequalities

From (-∞, -5/2) let us take -3

(2x - 5) (2x + 5)     0 

 (-6 − 5) (-6 + 5) < 0

(-11)(-1) > 0

11 > 0 True

From (-5/2, 5/2) let us take 0

(2x - 5) (2x + 5)     0 

 (0− 5) (0 + 5) < 0

(-5)(5) > 0

-25 > 0 False

From (5/2, ) let us take 4

(2x - 5) (2x + 5)     0 

 (8 − 5) (8 + 5) < 0

(3)(13) > 0

39 > 0 True

Hence, the solution set is 

(-∞, -5/2) U (5/2, ∞)

Problem 4 :

Graph and solve for x :

2x² − 12x + 50 ≤ 0

Solution :

2x² − 12x + 50 ≤ 0

2(x²− 6x + 25) ≤ 0

x² − 6x + 25 ≤ 0

(x²− 6x + 9) + 25 − 9 ≤ 0

(x − 3)² + 16 ≤ 0

This is not true for any real value of x.

So, the given quadratic inequality has no solution.

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge1.png

Recent Articles

  1. SAT Math Problems and Solutions

    Feb 14, 26 06:05 AM

    SAT Math Problems and Solutions

    Read More

  2. SAT Math Practice Questions with Answers

    Feb 14, 26 05:47 AM

    digitalsatmath372.png
    SAT Math Practice Questions with Answers

    Read More

  3. SAT Math Practice Test with Answers

    Feb 14, 26 02:30 AM

    digitalsatmath376.png
    SAT Math Practice Test with Answers

    Read More