GRADE 11 TRIGONOMETRY PROBLEMS

Sum to Product Identities

sin C + sin D  =  2 sin [(C + D)/2] cos [(C - D)/2]

sin C - sin D  =  2 cos [(C + D)/2] sin [(C - D)/2]

cos C + cos D  =  2 cos [(C + D)/2] cos [(C - D)/2]

cos C - cos D  =  -2 sin [(C + D)/2] sin [(C - D)/2]

Problem 1 :

Prove that

sin(4A-2B) + sin(4B-2A) /cos(4A-2B) + cos(4B-2A) = tan(A+B)

Solution :

sin(4A-2B) + sin(4B-2A) 

=   2sin(A + B)cos(3A+3B)

cos(4A-2B) + cos(4B-2A) 

=  2cos(A+B)cos(3A+3B)

Then, 

sin(4A-2B) + sin(4B-2A) /cos(4A-2B) + cos(4B-2A) :

=  2sin(A+B)cos(3A+3B) /2cos(A+B)cos(3A+3B)

=  tan(A+B)

Hence proved.

Problem 2 :

Prove that :

cot(A+15) - tan(A-15)  =  4cos2A/(1 + 2sin2A)

Solution :

cot(A+15)  =  cos(A+15) / sin(A+15)

tan(A+15)  =  sin(A-15) / cos(A-15)

Then, 

cot(A+15) - tan(A-15) :

= [cos(A+15)/sin(A-15)] - [sin(A-15)/cos(A-15)]

=  [cos (A+15)cos(A-15) - sin(A-15)sin(A+15)] / sin(A+15)cos (A-15)  -------(1)

cos(A+15)cos(A-15)  =  (1/2)[2cos(A+15) cos (A-15)]

=  (1/2)[cos2A + cos30]

sin(A-15)sin(A+15)  =  (-1/2)[-2 sin (A-15) sin (A+15)]

=  (-1/2)[cos2A - cos30]

Numerator of (1) :

cos(A+15)cos(A-15) - sin(A-15)sin(A+15) :

=  (1/2)[cos2A + cos30] - (-1/2)[cos2A - cos30]

=  (1/2)[2cos2A] 

=  cos2A

Denominator of (1) :

sin (A+15)cos(A-15) :

=  (1/2)[2sin(A+15)cos(A-15)]

=  (1/2)[sin2A + sin30]

=  (1/2)[sin2A + (1/2)]

=  (1/4)[2sin2A + 1]

Then, 

(1)----->  =  cos 2A/[(1/4)(2sin2A + 1)]

=  4cos2A / (2sin2A + 1)

Hence it is proved.

Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Videos

    May 22, 24 06:32 AM

    sattriangle1.png
    SAT Math Videos (Part 1 - No Calculator)

    Read More

  2. Simplifying Algebraic Expressions with Fractional Coefficients

    May 17, 24 08:12 AM

    Simplifying Algebraic Expressions with Fractional Coefficients

    Read More

  3. The Mean Value Theorem Worksheet

    May 14, 24 08:53 AM

    tutoring.png
    The Mean Value Theorem Worksheet

    Read More