GENERATING EQUIVALENT EXPRESSIONS

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

An algebraic expression is a mathematical sentence involving constants (any real number), variables and the algebraic operations (addition, subtraction, multiplication, division and exponentiation by an exponent that is a rational number).

To generate equivalent expression to another expression, we have to be aware of the parts of an algebraic expression. 

We can use properties to combine like terms in an expression.

For example, let us consider the algebraic expression

3x + 2x + 4

You can  add / subtract the coefficients of the like terms to combine them. 

3x + 2x + 4  =  5x + 4

Write the equivalent expressions for the following :

Example 1 :

6x2 - 4x2

Solution :

6x2 - 4x2

= 2x2

Example 2 :

-3(5 - 6x)

Solution :

= -3(5 - 6x)

Use Distributive Property. 

= -3(5) - 3(-6x)

= -15 + 18x

= 18x - 15

Example 3 :

3a + 2(b + 5a)

Solution :

= 3a + 2(b + 5a)

Use Distributive Property. 

= 3a + 2b + 2(5a)

= 3a + 2b + 10a

= 13a + 2b

Example 4 :

 y + 11x + 7y - 7x

Solution :

= y + 11x + 7y - 7x

= 4x + 8y

Example 5 :

8m + 14 - 12 + 4n

Solution :

= 8m + 14 - 12 + 4n

= 8m + 4n + 2

Example 6 :

7(x - 3) + 2(2x - 5) - 3(x - 5)

Solution :

= 7(x - 3) + 2(2x - 5) - 3(x - 5)

Use Distributive Property.

= 7(x) + 7(-3) + 2(2x) + 2(-5) - 3(x) - 3(-5)

= 7x - 21 + 4x - 10 - 3x + 15

= 8x - 16

Example 7 :

4x - (2 + 4x) - 2(x - 1) - 8(x -3)

Solution :

4x - (2 + 4x) - 2(x - 1) - 8(x -3)

Use Distributive Property.

4x - 2 - 4x - 2(x) - 2(-1) - 8(x) - 8(-3)

4x - 2 - 4x - 2x + 2 - 8x + 24

= -10x + 24

Example 8 :

(x + 3)2 - (x - 3)2

Solution :

(x + 3)2 - (x - 3)2

(x + 3)(x + 3) - (x - 3)(x - 3)

(x2 + 3x + 3x + 9) - (x2 - 3x - 3x + 9)

(x2 + 6x + 9) - (x2 - 6x + 9)

x2 + 6x + 9 - x2 + 6x - 9

12x

Example 9 :

x2 + 5x - (x + 3)(x - 3)

Solution :

x2 + 5x - (x + 3)(x - 3)

x2 + 5x - (x2 - 3x + 3x - 9)

x2 + 5x - (x2 - 9)

x2 + 5x - x2 + 9

5x + 9

Example 10 :

25(x + 5) - 5(x + 5)2

Solution :

= 25(x + 5) - 5(x + 5)2

Factor (x + 5).

= (x + 5)[25 - 5(x + 5)]

= (x + 5)(25 - 5x + 25)

= (x + 5)(-5x)

= x(-5x) + 5(-5x)

= -5x2 - 25x

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 36)

    Nov 28, 25 09:55 AM

    digitalsatmath409.png
    10 Hard SAT Math Questions (Part - 36)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 7)

    Nov 26, 25 09:03 AM

    Digital SAT Math Problems and Solutions (Part - 7)

    Read More

  3. Hcf and Lcm Word Problems

    Nov 21, 25 09:03 AM

    Hcf and Lcm Word Problems

    Read More