In mathematics, Gaussian elimination method is known as the row reduction algorithm for solving systems of linear equations. It consists of a sequence of operations performed on the corresponding matrix of coefficients.
We can also use this method to estimate either of the following :
To reduce the augmented matrix to row - echelon form you should follow the following steps :
Step 1 :
Locate the leftmost column that does not consist entirely of zeros.
Step 2 :
Interchange the top row with another row, if necessary, to bring a nonzero entry to the top of the column found in Step 1.
Step 3 :
If the entry that is now at the top of the column found in Step 1 is b, multiply the first row by 1/b in order to introduce a leading 1.
Step 4 :
Add suitable multiples of the top row to the rows below so that all entries below the leading 1 become zeros.
Step 5 :
Now cover the top row in the matrix and begin again with Step 1 applied to the submatrix that remains. Continue in this way until the entire matrix is in row - echelon form.
Solve the following systems of linear equations by using the Gauss elimination method :
Example 1 :
5x + 6y = 7
3x + 4y = 5
Solution :
The system of linear equations has the following augmented matrix.
The last matrix is in row - echelon form. The corresponding reduced system is :
x + 6y/5 = 7/5 ----(1)
y = 2 ----(2)
Substitute y = 2 in (1).
x + 6(2)/5 = 7/5
x + 12/5 = 7/5
Subtract 12/5 from both sides.
x = 1
Therefore the solution of the system is
x = 1 and y = 2
Example 2 :
4y + 2z = 1
2x + 3y + 5z = 0
3x + y + z = 11
Solution :
The system of linear equations has the following augmented matrix.
The last matrix is in row - echelon form. The corresponding reduced system is :
x + 3y/2 + 5z/2 = 0 ----(1)
y + z/2 = 1/4 ----(2)
z = -5/2 ----(3)
Substitute z = -5/2 in (2).
y + (-5/2)/2 = 1/4
y - 5/4 = 1/4
Add 5/4 to both sides.
y = 6/4
y = 3/2
Substitute y = 3/2 and z = -5/2 in (1).
x + 3(3/2)/2 + 5(-5/2)/2 = 0
x + 9/4 - 25/4 = 0
x - 16/4 = 0
x - 4 = 0
Add 4 to both sides.
x = 4
Therefore the solution of the system is
x = 4, y = 3/2 and z = -5/2
Example 2 :
3x + 6y - 9z = 15
2x + 4y - 6z = 10
-2x - 3y + 4z = -6
Solution :
The system of linear equations has the following augmented matrix.
The last matrix is in row - echelon form. The corresponding reduced system is :
x + 2y - 3z = 5 ----(1)
y - 2z = 4 ----(2)
From (2),
y = 2z + 4
Let z = t.
y = 2t + 4
Substitute y = 2t + 4 and z = t.
x + 2(2t + 4) - 3t = 5
x + 4t + 8 - 3t = 5
x + t + 8 = 5
Subtract t and 8 from both sides.
x = -t - 3
The solution of the system is
x = -t - 3
y = 2t + 4
z = t
For different values of t, we will have different values for x, y and z.
Therefore the system has infinite number of solutions.
If t = 0,
x = -3
y = 4
z = 0
If t = 1,
x = -4
y = 6
z = 1
If t = -1,
x = -2
y = 2
z = -1
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
WORD PROBLEMS
Word problems on simple equations
Word problems on linear equations
Word problems on quadratic equations
Area and perimeter word problems
Word problems on direct variation and inverse variation
Word problems on comparing rates
Converting customary units word problems
Converting metric units word problems
Word problems on simple interest
Word problems on compound interest
Word problems on types of angles
Complementary and supplementary angles word problems
Markup and markdown word problems
Word problems on mixed fractions
One step equation word problems
Linear inequalities word problems
Ratio and proportion word problems
Word problems on sets and Venn diagrams
Pythagorean theorem word problems
Percent of a number word problems
Word problems on constant speed
Word problems on average speed
Word problems on sum of the angles of a triangle is 180 degree
OTHER TOPICS
Time, speed and distance shortcuts
Ratio and proportion shortcuts
Domain and range of rational functions
Domain and range of rational functions with holes
Graphing rational functions with holes
Converting repeating decimals in to fractions
Decimal representation of rational numbers
Finding square root using long division
L.C.M method to solve time and work problems
Translating the word problems in to algebraic expressions
Remainder when 2 power 256 is divided by 17
Remainder when 17 power 23 is divided by 16
Sum of all three digit numbers divisible by 6
Sum of all three digit numbers divisible by 7
Sum of all three digit numbers divisible by 8
Sum of all three digit numbers formed using 1, 3, 4
Sum of all three four digit numbers formed with non zero digits
Sum of all three four digit numbers formed using 0, 1, 2, 3
Sum of all three four digit numbers formed using 1, 2, 5, 6
©All rights reserved. onlinemath4all.com
May 22, 22 01:12 AM
Probability Worksheet
May 22, 22 12:59 AM
SAT Math Practice - Different Topics - Concept - Formulas - Example problems with step by step explanation
May 22, 22 12:58 AM
SAT Math Practice Worksheets - Topic wise worksheet with step by step explanation for each question