FIND THE VERTEX OF THE PARABOLA

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Equation

Axis of symmetry

Which side open

(y-k)² = 4a(x-h)

(y-k)² = -4a(x-h)

(x-h)² = 4a(y-k)

(x-h)² = -4a(y-k)

x-axis

x-axis

y-axis

y-axis

Right ward

Left ward

Upward

Downward

In the above equations (h, k) is the vertex of the parabola.

Let us look in to some example problems based on the above concept.

Example 1 :

Find the vertex of the following parabola

x2 = - 4y

Solution :

x2 = - 4y

We can compare the above equation with the general form (x - h)2  = -4 a (y - k)

(x - 0)2 = - 4(y - 0)

So, the required vertex V(h, k) is (0, 0).

Example 2 :

Find the vertex of the following parabola

x2 − 2x + 8y + 17 = 0

Solution :

x2 − 2x + 8y + 17 = 0

Subtract 8y and 17 on both sides

x2 − 2x + 8y + 17 - 8y - 17  =  -8y - 17

x2 − 2x  =  -8y - 17

Split the coefficient of x as the multiple of 2.

x2 − 2 1 + 12 - 12   =  -8y - 17

(x - 1)2 - 1   =  -8y - 17

Add 1 on both sides

(x - 1)2 - 1 + 1   =  -8y - 17 + 1

(x - 1)2   =  -8y - 16

(x - 1)2   =  -8(y + 2)

(x - 1)2   =  -8(y - (-2))

The above equation exactly matches with the equation

(x - h)2   =  -4a(y - k)

(h, k)  ==>  (1, -2)

So, the required vertex of the parabola is (1, -2).

Example 3 :

Find the vertex of the following parabola

y2 − 8x + 6y + 9 = 0

Solution :

y2 + 6y − 8x + 9  =  0

Add 8x and subtract 9 on both sides

y2 + 6y − 8x + 9 + 8x - 9  =  0 + 8x - 9

y2 + 6y  =  8x - 9

Split the coefficient of y as the multiple of 2.

y2 + 2 y 3 + 32 - 32  =  8x - 9

(y - 3)2 - 9  =  8x - 9

Add 9 on both sides

(y - 3)2 - 9 + 9  =  8x - 9 + 9

(y - 3)2  =  8x

(y - k)2  =  4a (x - h)

(y - (-3))2  =  8(x - 0)

(h, k)  ==>  (0, -3)

So, the required vertex of the parabola is (0, -3).

Example 4 :

Find the vertex of the following parabola

x2 − 6x − 12y − 3 = 0

Solution :

x2 − 6x − 12y − 3 = 0

Add 12y and 3 on both sides

x2 − 6x − 12y − 3 + 12y + 3 = 0 + 12y + 3

x2 − 6x  = 12y + 3

Split the coefficient of x as the multiple of 2.

x2 − 2x3 + 32 - 32 = 12y + 3

(x - 3)2 - 32 = 12y + 3

(x - 3)2 - 9 = 12y + 3

Add 9 on both sides

(x - 3)2 - 9 + 9 = 12y + 3 + 9

(x - 3)2  = 12y + 12

(x - 3)2 = 12(y + 1)

(x - 3)2 = 12(y - (-1))

(x - h)2  =  4a (y - k)

(x - 3)2  =  12(y - (-1))

(h, k)  ==>  (3, -1)

So, the required vertex of the parabola is (3, -1).

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge1.png

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 44)

    Jan 12, 26 06:35 AM

    10 Hard SAT Math Questions (Part - 44)

    Read More

  2. US Common Core K-12 Curricum Algebra Solving Simple Equations

    Jan 07, 26 01:53 PM

    US Common Core K-12 Curricum Algebra Solving Simple Equations

    Read More

  3. 10 Hard SAT Math Questions (Part - 4)

    Jan 05, 26 06:56 PM

    digitalsatmath376.png
    10 Hard SAT Math Questions (Part - 4)

    Read More