FIRST DERIVATIVE TEST FOR RELATIVE MAXIMUM AND MINIMUM

Relative Maximum :

A relative maximum point is a point where the function changes direction from increasing to decreasing (making that point a "peak" in the graph).

Relative Minimum :

Similarly, a relative minimum point is a point where the function changes direction from decreasing to increasing (making that point a "bottom" in the graph).

If the first derivative is negative to the left of the critical point and positive to the right of critical point, it has relative minimum at c.

If the first derivative is positive to the left of the critical point and negative to the right of critical point, it has relative maximum at c.

Example 1 :

The function defined by f(x)  =  x2 - x for all real values of x has relative maximum and relative minimum at x = ?.

Solution :

f(x)  =  x2 - x

f'(x)  =  2x-1

f'(x)  =  0

2x-1  =  0

x  =  1/2

To the left of the critical point :

Let x = 0 ∈ (- ∞, 1/2)

f'(x)  =  2x-1

f'(0)  =  -1 < 0 (Negative)

To the right of the critical point :

Let x = 1 ∈ (1/2, )

f'(1)  =  > 0 (Positive)

Result :

The curve is changing its direction from decreasing to increasing. So, there is relative minimum at x  =  c.

Relative minimum at x  =  1/2.

Example 2 :

The function defined by

f(x)  =  x3-9x2+24x

for all real values of x has relative maximum and relative minimum at x = ?.

Solution :

f(x)  =  x3-9x2+24x

f'(x)  =  3x2-18x+24

f'(x)  =  0

3x2-18x+24  =  0

x2-6x+8  =  0

(x-2)(x-4)  =  0

x  =  2 and x  =  4

To the left of the critical point at x  =  2 :

Let x = 0 ∈ (- ∞, 2)

f'(x)  =  (x-2)(x-4)

f'(0)  =  8 > 0 (Positive)

To the right of the critical point at x  =  2 :

Let x = 3 ∈ (2, 4)

f'(3)  =  -1 < 0 (Negative)

Result :

The curve is changing its direction from increasing to decreasing. So, there is relative maximum at x  =  c.

Relative minimum at x  =  1/2.

To the left of the critical point at x  =  4 :

Already taken and it is negative.

To the right of the critical point at x  =  4 :

Let x = 5 ∈ (4, )

f'(x)  =  (x-2)(x-4)

f'(5)  =  (5-2)(5-4)

f'(5)  =  3 > 0 (Positive)

Result :

The curve is changing its direction from decreasing to increasing. So, there is relative minimum at x  =  c.

Relative minimum at x  =  4.

Example 3 :

The function defined by

f(x)  =  cos 2x - x

for all real values of x has relative maximum and relative minimum at x = ?.

Solution :

f(x)  =  cos 2x - x

f'(x)  =  -2sin 2x-1

f'(x)  =  0

-2sin 2x-1  =  0

2sin 2x+1  =  0

sin2x  =  -1/2

2x  =  sin-1(-1/2) 

2x  =   -π/6, 7π/6

x  =   -π/12, 7π/12

The intervals are (0, -π/12) (-π/12, 7π/12) and (7π/12, 2π).

f'(x)  =  -2sin 2x-1

Let x = 14° ∈ (0, -π/12) 

f'(14)  =  positive

Let x = 104° ∈ (-π/12, 7π/12)

f'(104)  =  Negative

Let x = 150° ∈ (7π/12, 2π).

f'(150)  =  positive

Maximum at x = -π/12, minimum at x = 7π/12.

So, relative maximum at -π/12 + nπ and relative minimum at 7π/12 + nπ.

Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. First Fundamental Theorem of Calculus - Part 1

    Apr 17, 24 11:27 PM

    First Fundamental Theorem of Calculus - Part 1

    Read More

  2. Polar Form of a Complex Number

    Apr 16, 24 09:28 AM

    polarform1.png
    Polar Form of a Complex Number

    Read More

  3. Conjugate of a Complex Number

    Apr 15, 24 11:17 PM

    conjugateofcomplexnumber1.png
    Conjugate of a Complex Number

    Read More