FINDING THE SUM OF GIVEN NUMBER OF TERMS FROM THE GIVEN INFORMATION

To find the sum of an arithmetic series, we use the formulas give below.

Sn  =  (n/2) [a + l] (or)

Sn  =  (n/2) [2a + (n - 1)d]

nth term of arithmetic progression :

an  =  a + (n - 1)d

Total number of terms :

n  =  [(l - a)/d] + 1

a = first term, d = common difference, n = number of terms and l = last term.

Question 1 :

Given a = 7, a13 = 35 find d and S13  

Solution :

13th term of the arithmetic progression,

a13  =  35

a + 12d  =  35 ---(1)

By applying the value of a in (1), we get d

7 + 12d  =  35

12d  =  35 - 7

12d  =  28

d  =  28/12  =  14/6  =  7/3

S =  (n/2) [2a + (n - 1)d]

S13  =  (13/2) [2(7) + (13 - 1)(7/3)]

S13  =  (13/2) [14 + 12(7/3)]

S13  =  (13/2) [14 + 28]

S13  =  (13/2) (42)

S13  =  273

Hence, the sum of 13 terms of the arithmetic progression is 273.

Question 2 :

Given a12 = 37, d = 3 find a and S12 

Solution :

12th term of AP :

a12 = 37

a + 11d  =  37 -----(1)

By applying the value of d in (1), we get

a + 11(3)  =  37

a + 33  =  37

a  =  37 - 33  =  4

Now, we find the sum of 12 terms

sn  =  (n/2)[2a + (n - 1|)d]

s12  =  (12/2)[2(4) + (12 - 1)(3)]

s12  =  6[8 + 11(3)]

s12  =  246

Hence, the sum of first 12 terms is 246.

Question 3 :

Given a3 = 15 , S10 = 125 find d and a10  

Solution :

Here, we have 3rd term and sum of first 10 terms. By using these information, we should find the common difference and 10th term.

a3 = 15

a + 2d  =  15  ----(1)

S10 = 125

Sn  =  (n/2)[2a + (n - 1)d]

Here, n = 10

(10/2)[2a + (10 - 1)d]  =  125

5[2a + 9d]  =  125

Dividing each side by 5.

2a + 9d  =  25  ----(2)

By solving (1) and (2), we will get the values of a and d.

(1) ⋅ 2 - (2)

2a + 4d  =  10

2a + 9 d  =  25

(-)     (-)     (-) 

--------------------

-5d  =  -15

d  =  3

By applying the value of d in (1), we get

a + 2(3)  =  15

a + 6  =  15

a  =  15 - 6  =  9

10th term :

a10  =  a + 9d

a10  =  9 + 9(3)

=  9 + 27

a10  =  36

Hence, the 10th term is 36.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 213)

    Jul 13, 25 09:51 AM

    digitalsatmath292.png
    Digital SAT Math Problems and Solutions (Part - 213)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 212)

    Jul 13, 25 09:32 AM

    digitalsatmath290.png
    Digital SAT Math Problems and Solutions (Part - 212)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 211)

    Jul 11, 25 08:34 AM

    digitalsatmath289.png
    Digital SAT Math Problems and Solutions (Part - 211)

    Read More