FINDING THE PERIMETER OF A TRIANGLE

Let a, b and c is the sides of the triangle. Then, the perimeter

P = a + b + c

Example 1 :

The sides of a triangle are 12 cm, 6 cm and 8 cm, find the perimeter of the triangle.

Solution :

Let a, b and c are the three sides of the triangle

a  =  12 cm, b  =  6 cm and c  =  8 cm

Perimeter P  =  12+6+8

=  26 cm

Therefore the perimeter of a required triangle  =  26 cm.

Example 2 :

The sides of a triangle are 5 cm, 7 cm and 9 cm find the perimeter of the triangle.

Solution :

Let a, b and c are the three sides of the triangle

a = 5 cm, b = 7 cm and c = 9 cm

Perimeter P  =  5+7+9

=  21 cm

Therefore the perimeter of a required triangle  =  21 cm.

Example 3 :

The sides of a triangle are in the ratio 2x, 3x and 5x. If the perimeter of the triangle is 100 then find the measurement of three sides.

Solution :

Let a, b and c be the three sides of the triangle

a  =  2x, b  =  3x  and c  =  5x

Perimeter P  =  2x+3x+5x

=  10 x

Perimeter of triangle  =  100 cm

10x  =  100

x  =  10 cm

Therefore, a  =  2x  =  2(10)  =  20 cm

b  =  3x  =  3(10)  =  30 cm

c  =  5x  =  5(10)  =  50 cm

Example 4 :

The sides of a triangles are in the ratio of 1/2 : 1/3 : 1/4. If the perimeter is 52 cm, then the length of the smallest side is.

Solution :

Ratio of sides of triangle 1/2 : 1/3 : 1/4 to be changed as 6 : 4 : 3

So, side lengths will be 6x, 4x and 3x.

Perimeter  =  52

(6x+4x+3x)/12  =  52

13x/12  =  52

x  =  52(12/13)

x  =  48

So, the smallest side will be 48/2  =  24 cm.

Example 5 :

The area of a triangle is 216 cm2 and its sides are in the ratio 3 : 4 : 5. The perimeter of the triangle is :

Solution :

Let sides be 3x, 4x and 5x.

Area of triangle  =  √s(s-a)(s-b) (s-c)

s  =  (3x+4x+5x)/2

s  =  12x/2

s  =  6x

s - a = 6x - 3x = 3x

s - b = 6x - 4x = 2x

s - c = 6x - 5x = x

√6x(3x)(2x) (x)  =  216

3x(2x)  =  216

6x2  =  216

x2  =  36

x  =  6

So, side lengths are 18 cm, 12 cm and 6 cm.

Perimeter of the triangle = 18 + 12 + 6

= 36 cm

Example 6 :

Area of a right triangle is 54 cm2. If one of its legs is 12 cm long, its perimeter is

Solution :

Area of right triangle = 54 cm2

(1/2) x base x height = 54

let height of the triangle = 12 cm

(1/2) x base x 12 = 54

base x 6 = 54

base = 54/6

base = 9

Hypotenuse = √92 + 122

√81 + 144

√225

= 15

Perimeter of triangle = 12 + 9 + 15

= 36 cm

So, the required perimeter is 36 cm.

Example 7 :

Perimeter of triangle ABC = Perimeter of triangle PQR. Find area of triangle ABC.

perimeter-of-triangle-q1

Solution :

Given that,

Perimeter of triangle ABC = Perimeter of triangle PQR

Perimeter of triangle PQR = PQ + QR + PR

= 6 + 10 + 14

= 30 cm

Perimeter of triangle ABC = AB + BC + CA

30 = AB + 5 + 13

30 = AB + 18

AB = 30 - 18

AB = 12 cm

Base of triangle BC = 5 cm and height of triangle = 12 cm

= (1/2) x base x height

= (1/2) x 5 x 12

= 5 x 6

= 30 cm2

Example 8 :

Area of an isosceles triangle is 48 cm2. If the altitudes corresponding to the base of the triangle is 8 cm, find the perimeter of the triangle.

Solution :

Since it is isosceles triangle, two sides will be equal.

Let x be the measure of equal sides.

perimeter-of-triangle-q2.png

(1/2) x base x height = 48

Given that, base = 8 cm

(1/2) x base x 8 = 48

base x 4 = 48

base (BC) = 12

BD = 6 cm

AB2 = AD2 + BD2

AB2 = 82 + 62

AB2 = 64 + 36

AB2 = 100

AB = 10 cm

Perimeter of triangle = AB + BC + CA

= 10 + 12 + 10

= 32

So, the required perimeter is 32 cm

Area of triangle PQR is 100 cm2.  If altitude QN is 10 cm, then its base PR is

(a) 20 cm     (b) 15 cm     (c) 10 cm      (d) 5 cm

perimeter-of-triangle-q3.png

Solution :

Area of triangle = (1/2) x base x height

20 = (1/2) x PR x QN

40 = PR x QN

Applying the value of QN, we get

40 = PR z 10

PR = 40 / 10

PR = 4 cm

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 213)

    Jul 13, 25 09:51 AM

    digitalsatmath292.png
    Digital SAT Math Problems and Solutions (Part - 213)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 212)

    Jul 13, 25 09:32 AM

    digitalsatmath290.png
    Digital SAT Math Problems and Solutions (Part - 212)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 211)

    Jul 11, 25 08:34 AM

    digitalsatmath289.png
    Digital SAT Math Problems and Solutions (Part - 211)

    Read More