Finding the perimeter and area of a rectangle :
Perimeter :
Perimeter is a path that surrounds a rectangle. The term may be used either for the path or its length it can be thought of as the length of the outline of the rectangle.
Area :
Area of a rectangle is defined as the space occupied by the rectangle shaped object on a flat surface. The area of a shape can be measured by comparing the shape to squares of a fixed size.
The measurements of perimeter use units such as centimeters, meters, kilometers, inches, feet, yards, and miles. The measurements of area use units such as square centimeters (cm²), square meters(m²), and so on.
Example 1 :
Find the perimeter and area of a rectangle of length 12 inches and width 5 inches.
Solution :
Draw a rectangle and label the length and width.
Perimeter = 2l + 2w Perimeter = 2(12) + 2(5) Perimeter = 24 + 10 Perimeter = 34 |
Area = lw Area = 12⋅5 Area = 60 |
So, the perimeter is 34 inches and the area is 60 square inches.
Example 2 :
The area of a rectangle is 56 square inches. If the length is 8 inches, find the width of the rectangle.
Solution :
Given : Area of the rectangle = 56 sq. in
lw = 56
Substitute l = 8
8w = 56
Divide both sides by 8.
w = 7
Hence, the width is 7 inches.
Example 3 :
The perimeter of a rectangle is 30 cm. The length is 3 more than twice the width. Find the length and width of the rectangle.
Solution :
Step 1 :
Let w = x.
Then, l = 2x + 3
Step 2 :
Given : Perimeter of the rectangle = 30 cm
2l + 2w = 30
Step 3 :
Substitute w = x and l = 2x + 3
2(2x + 3) + 2x = 30
4x + 6 + 2x = 30
6x + 6 = 30
Subtract 6 from both sides.
6x = 24
Divide both sides by 6.
x = 4
Width = x = 4
Length = 2x + 3 = 2(4) + 3 = 11
Hence, the length is 11 cm and width is 4 cm.
Example 4 :
The diagonal of a rectangle is 5 cm and one of its sides is 4 cm. Find its area.
Solution :
Step 1 :
Let us assume that one of the sides given is length.
Then, l = 4 cm.
Step 2 :
Draw a rectangle and label the diagonal and length.
Step 3 :
To find area of a rectangle, we need the measures of length and width. We know the length and it is 4 cm. We have to find the width.
Step 4 :
In the rectangle above, let us consider the right triangle ABC and apply Pythagorean theorem.
AB² + BC² = AC²
Substitute BC = 4 and AC = 6
w² + 4² = 5²
w² + 16 = 25
Subtract 16 from both the sides.
w² = 9
w² = 3²
Remove the exponent 2 on both sides.
w = 3 cm.
Step 5 :
Area of the rectangle = lw
Area of the rectangle = 4⋅3
Area of the rectangle = 12 square cm.
After having gone through the stuff given above, we hope that the students would have understood "Finding the perimeter and area of a rectangle".
Apart from the stuff given above, if you want to know more about "Finding the perimeter and area of a rectangle", please click here
Apart from the stuff given in this section, if you need any other stuff in math, please use our google custom search here.
WORD PROBLEMS
HCF and LCM word problems
Word problems on simple equations
Word problems on linear equations
Word problems on quadratic equations
Area and perimeter word problems
Word problems on direct variation and inverse variation
Word problems on comparing rates
Converting customary units word problems
Converting metric units word problems
Word problems on simple interest
Word problems on compound interest
Word problems on types of angles
Complementary and supplementary angles word problems
Markup and markdown word problems
Word problems on mixed fractrions
One step equation word problems
Linear inequalities word problems
Ratio and proportion word problems
Word problems on sets and venn diagrams
Pythagorean theorem word problems
Percent of a number word problems
Word problems on constant speed
Word problems on average speed
Word problems on sum of the angles of a triangle is 180 degree
OTHER TOPICS
Time, speed and distance shortcuts
Ratio and proportion shortcuts
Domain and range of rational functions
Domain and range of rational functions with holes
Graphing rational functions with holes
Converting repeating decimals in to fractions
Decimal representation of rational numbers
Finding square root using long division
L.C.M method to solve time and work problems
Translating the word problems in to algebraic expressions
Remainder when 2 power 256 is divided by 17
Remainder when 17 power 23 is divided by 16
Sum of all three digit numbers divisible by 6
Sum of all three digit numbers divisible by 7
Sum of all three digit numbers divisible by 8
Sum of all three digit numbers formed using 1, 3, 4
Sum of all three four digit numbers formed with non zero digits