FINDING THE COORDINATES OF POINT OF TRISECTION

About "Finding the Coordinates of Point of Trisection"

Finding the Coordinates of Point of Trisection :

Here we are going to see some example problems on finding the coordinates of point of trisection.

Finding the Coordinates of Point of Trisection - Practice questions

Question 1 :

Find the coordinates of the points of trisection of the line segment joining the points A(−5, 6) and B(4,−3).

Solution :

=  (mx2 + nx1)/(m + n), (my2 + ny1)/(m + n)

Point P divides the line segment in the ratio 1 : 2

A(−5, 6) and B(4,−3)

=  (1(4) + 2(-5))/(1 + 2), (1(-3) + 2(6))/(1 + 2)

=  (4 - 10)/3, (-3 + 12)/3

=  -6/3, 9/3

=  (-2, 3)

Point Q divides the line segment in the ratio 2 : 1

A(−5, 6) and B(4,−3)

=  (2(4) + 1(-5))/(2 + 1), (2(-3) + 1(6))/(1 + 2)

=  (8 - 5)/3, (-6 + 6)/3

=  3/3, 0/3

=  (1, 0)

Question 2 :

The line segment joining A(6,3) and B(−1, −4) is doubled in length by adding half of AB to each end. Find the coordinates of the new end points.

Solution :

To find the half of the length of AB, we have to find the midpoint of the line segment AB.

Let C be the point which divides the line segment AB in the ratio 1 : 1 

  =  (mx2 + nx1)/(m + n), (my2 + ny1)/(m + n)

  =  (1(-1) + 1(6))/(1 + 1), (1(-4) + 1(3))/(1 + 1)

  =  (-1 + 6)/2, (-4 + 3)/2

  =  (5/2, -1/2)

A is the point which divides the line segment in the ratio 1 : 2 internally.

A(6, 3)  =  (mx2 + nx1)/(m + n), (my2 + ny1)/(m + n)

(1(-1) + 2x1)/(1 + 2), (1(-4) + 2y1)/(1 + 2)  =  (6, 3)

(-1 + 2x1)/3, (-4 + 2y1)/3  =  (6, 3)

Equating the x and y -coordinates 

(-1 + 2x1)/3  =  6

-1 + 2x1  =  18

  2x1  =  19

  x1  =  19/2

(-4 + 2y1)/3  =  3

-4 + 2y1  =  9

  2y1  =  9 + 4

  x1  =  13/2

Hence the point D is (19/2, 13/2).

B is the point which divides the line segment in the ratio 2 : 1 internally.

B(-1, -4)  =  (2x2 + 1(6))/(2 + 1), (2y2 + 1(3))/(2 + 1)

 (2x2 + 6)/3, (2y2 + 3)/3  =  B(-1, -4)

Equating the x and y -coordinates 

(2x2 + 6)/3  =  -1

2x2 + 6  =  -3 

2x2 =  -3 - 6

2x2 =  -9

x2 =  -9/2

(2y2 + 3)/3  =  -4

2y2 + 3  =  -12 

2y2 =  -12 - 3

2y2 =  -15

y2 =  -15/2

Hence the point E is (-9/2, -15/2).

After having gone through the stuff given above, we hope that the students would have understood, "Finding the Coordinates of Point of Trisection" 

Apart from the stuff given in this section if you need any other stuff in math, please use our google custom search here.

Widget is loading comments...