FINDING RANGE OF RATIONAL FUNCTIONS

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

The range of a real function of a real variable is the set of all real values taken by f(x) at points in its domain. In order to find the range of real function f(x), we may use the following steps.

Steps Involved in Finding Range of Rational Function :

By finding inverse function of the given function, we may easily find the range. In order to find the inverse function, we have to follow the steps given below.

(i)  Put y = f(x)

(ii)  Solve the equation y = f(x) for x in terms of y.

(iii)  By replacing x by y and y by x, we get inverse function.

(iv)  The  values that we get for the inverse function by applying the the domain is known as range.

Domain of f(x)  =  Range of f-1(x)

Range of f(x)  =  Domain of f-1(x)

Solved Questions

Question 1 :

Find the range of the function f(x) is given by

f(x)  =  (x - 2)/(3 - x)

Solution :

y = (x - 2)/(3 - x)

Let us solve for x, in terms of y.

(3 - x)y  = (x - 2)

3y - xy  =  x - 2

3y + 2  =  x + xy

x(1 + y)  =  (3y + 2)

x  =  (3y + 2)/(1 + y)

Inverse function :

f-1(x)   =  (3x + 2)/(1 + x)

To find the possible values inverse function, we have to equate the denominator to zero.

1 + x  =  0

x  =  -1

The possible values of x of inverse function is all real values except -1.

Hence the range of f(x) is R - {-1}.

(ii)  Find the range of f(x)  =  √(16 - x2)

Solution :

y  =  √(16 - x2)

y2  =  16 - x2

Solving for x,

x =  16 - y2

x =  42 - y2

x =  42 - y2

x  =  √(42 - y2)

Inverse function :

f-1(x)  =  √(42 - x2)

If the values of x is more than 5, then we will get negative values inside the radical sign.

The domain for the given function f(x) is [-4, 4]. By applying those values of x, we get the values between 0 to 4.

Hence the range is [0, 4].

(iii)  Find the domain and range of real valued function f(x) is given by f(x)  =  √[(x - 2)/(3 - x)]

Solution :

Let y  = √[(x - 2)/(3 - x)]

Domain :

3 - x  =  0

x  =  3

Domain is set of possible real values except 3

Hence the required domain is R - {3}

y2  =  (x - 2) / (3 - x)

y2 (3 - x)  =  (x - 2)

3y2 - xy2  =  x - 2

3y2 + 2  =  x + xy2

x(1 + y2)  =  3y2 + 2

x  =  (3y2 + 2)/(1 + y2)

Inverse of the given function is :

y  =  (3y2 + 2)/(1 + y2)

f-1(x)  =  (3x2 + 2)/(1 + x2)

By applying the domain values in this function, we get positive values for inverse function.

So, the range is [0, ∞)

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge.png

Recent Articles

  1. Solving the HARDEST SAT Math Questions ONLY using Desmos

    Dec 31, 25 05:53 AM

    Solving the HARDEST SAT Math Questions ONLY using Desmos

    Read More

  2. Times Table Shortcuts

    Dec 30, 25 07:14 PM

    multiplicationtricks3.png
    Times Table Shortcuts - Concept - Examples

    Read More

  3. 10 Hard SAT Math Questions (Part - 42)

    Dec 30, 25 05:52 AM

    10 Hard SAT Math Questions (Part - 42)

    Read More