# FINDING QUADRATIC EQUATION WITH THE ROOTS IN TERMS OF ALPHA BETA

Finding Quadratic Equation with the Roots in Terms of Alpha Beta :

Here we are going to see some example problems of finding quadratic equation with the roots in terms of alpha beta.

## Formulas of Alpha Beta in Quadratic Equation

(α2 + β2)  =  (α + β)- 2αβ

(α3 - β3)  =  (α - β)+ 3αβ(α - β)

(α4 + β4)  =  (α2β2)- 2α2β2

α - β  =  √[(α + β)- 4αβ]

## Finding Quadratic Equation with the Roots in Terms of Alpha Beta - Questions

Question 1 :

The roots of the equation x2 + 6x − 4 = 0 are α, β. Find the quadratic equation whose roots are

(i) α2 and β2

Solution :

x2 + 6x − 4 = 0

a = 1, b = 6 and c = -4

Sum of roots (α + β)  =  -b/a  =  -6/1  =  -6

Product of roots (α β)  =  c/a  =  -4/1  =  -4

α = α2 β = β2

General form of quadratic equation with α and β as roots

x2 - (α + β)x + αβ = 0

Required quadratic equation with α2 and βas roots

x2 - (α2 + β2)x + α2 β2 = 0

x2 - (α2 + β2)x + (αβ)2 = 0  ---(1)

α2 + β=  (α + β)2 - 2αβ  =  (-6)- 2(-4)

α2 + β2  =  36 + 8  =  44

By applying the value of α2 + β2 in (1)

x2 - 44x + (-4)2 = 0

x2 - 44x + 16  =  0

(ii)  2/α and 2/β

Solution :

Required quadratic equation with roots 2/α and 2/β

x2 - [(2/α) + (2/β)]x + (2/α) (2/β =  0

x2 - [(2β + 2α)/αβ] x + (4/αβ)  =  0

x2 - 2[(α+β)/αβ] x + (4/αβ)  =  0

x2 - 2[(-6)/(-4)] x + (4/(-4))  =  0

x2 - 3x - 1  =  0

(iii) α2β and β2α

Solution :

Required quadratic equation with roots 2/α and 2/β

x2 - [(α2β) + (β2α)]x + (α2β) (β2α =  0

x2 - αβ (α + β) x + α3β3  =  0

x2 - αβ (α + β) x + (αβ)3  =  0

x2 - (-4) (-6) x + (-4)3  =  0

x2 - 24x - 64  =  0 After having gone through the stuff given above, we hope that the students would have understood, "Finding Quadratic Equation with the Roots in Terms of Alpha Beta".

Apart from the stuff given in this section "Finding Quadratic Equation with the Roots in Terms of Alpha Beta"if you need any other stuff in math, please use our google custom search here.