FINDING ORTHOCENTER OF THE TRIANGLE WITH COORDINATES

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Definition of Orthocenter :

The altitudes of a triangle are concurrent and the point of concurrence is called the orthocenter of the triangle. The orthocenter is denoted by O.

The point of intersection of the perpendicular lines drawn from the vertex A and B

Question 1:

Find the co-ordinates of the orthocentre of a triangle whose vertices are (2, -3) (8, -2) and (8, 6). 

Solution :

Let the given points be A (2,-3) B (8,-2) and C (8,6)

First we find the equation of perpendicular line drawn through the vertex A.

Equation of the altitude passing through A :

Slope  =  [(y2 - y1)/(x2 - x1)]

B (8, -2) and C (8, 6)

  Slope of BC  =  (6 - (-2)) / (8 - 8)

  =  8/0  =  undefined

Slope of the altitude through A = -1/ slope of BC

  =  -1/undefined

  =  0 

Here A (2, -3)  and m = 0

(y - y1)  =  m (x - x1)

y-(-3)  =  0 (x-2)

y + 3  =  0

Equation of the altitude passing through the vertex A is

y + 3  =  0 ---(1)

Equation of the line passing through vertex B :

A (2, -3) and C (8, 6)

Slope f AC  =  (6 + 3) / (8 - 2)

  =  9/6

=  3/2

Slope of the altitude B = -1/ slope of AC

  =  -2/3

Equation of the altitude through B :

(y - y1)  =  m(x -x1)

Here B (8, -2) and m  =  2/3

(y - (-2))  =  (-2/3)(x - 8)

  3 (y + 2)  =  -2 (x - 8)

  3 y + 6  =  -2 x + 16 

  2 x + 3 y - 16 + 6  =  0

  2 x + 3 y - 10  =  0 -------(2)

Orthocenter is the point of intersection of the altitudes through A and B.

By applying (1) in (2), we get

From (1), y  =  -3

2x + 3(-3) - 10  =  0

2x - 9 - 10  =  0

2x  =  19

x  =  19/2

Hence the orthocenter is (19/2, -3).

Question 2 :

Find the co-ordinates of the orthocentre of a triangle whose vertices are (3, 4) (2, -1) and (4, -6).

Solution :

Let the given points be A (3, 4) B (2, -1) and C (4, -6)

Slope of BC :

B (2, -1) and C (4, -6)

  =  (-6 + 1) / (4 - 2)

  =  -5/2

Slope of perpendicular through A  =  -1 / (-5/2)

=  2/5

Equation of altitude through the vertex A :

A(3, 4) and slope  =  2/5

(y - y1)  =  m(x - x1)

(y - 4)  =  (2/5)(x - 3)

5(y - 4)  =  2(x - 3)

5y - 20  =  2x - 6

2x - 5y + 20 - 6  =  0

2x - 5y  =  -14 -------(1)

Slope of AC  =  [(y₂ - y₁)/(x₂ - x₁)]

A (3, 4) and C (4, -6)

  =  (-6-4) / (4-3)

  =  -10/1

  =  -10

Slope of the altitude through B  = -1/ slope of AC

  =  -1/(-10)

  =  1/10

Equation of altitude through the vertex B :

B (2, -1) and m = 1/10

  (y - (-1))  =  (1/10) (x - 2)

  10 (y + 1)  =  (x - 2)

  10 y + 10  =  x - 2

x - 10 y - 2 - 10 = 0  

x - 10 y  =  12  --------(2)

Solving (1) and (2)

(1) - (2) ⋅ 2

        2x - 5y  =  -14

       2x - 20 y  =  24

       (-)    (+)       (-)

   --------------------

             15y  =  50

y  =  2

So the orthocentre is (-13,5/2).

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Practice

    Dec 05, 25 04:04 AM

    satmathquestions1.png
    SAT Math Practice - Different Topics - Concept - Formulas - Example problems with step by step explanation

    Read More

  2. 10 Hard SAT Math Questions (Part - 37)

    Dec 03, 25 07:02 AM

    digitalsatmath411.png
    10 Hard SAT Math Questions (Part - 37)

    Read More

  3. Factorial Problems and Solutions

    Dec 02, 25 09:27 AM

    Factorial Problems and Solutions

    Read More