# FINDING DISTANCE BETWEEN TWO POINTS EXAMPLES

Let (x1, y1) and (x2, y2) be the two points as shown below.

Then, the formula for the distance between the two points is

√[(x2 - x1)2 + (y2 - y1)2]

## Examples

Example 1 :

Check whether (5,-2) (6,4) and (7,-2) are the vertices of an isosceles triangle.

Solution :

Let the given points as A(5,-2)  B(6,4) and C(7,-2)

Distance between two points = √(x2 - x1)2(y2 - y1)2

Length of the side AB :

Here, x1  =  5, y1  =  -2, x2  =  6  and  y₂  =  4

=  √(6 - 5)2 + (4 - (-2))2

=  √12 + (4+2)2

=  √1 + 36

=  √37

Length of the side BC :

Here, x1  =  6, y1  =  4, x2  =  7  and  y₂  =  -2

=  √(7 - 6)2 + (-2 - 4)2

=  √12 + (-6)2

=  √1 + 36

=  √37

Length of the side CA :

Here, x1  =  7, y1  =  -2, x2  =  5  and  y₂  =  -2

=  √(-5 - 7)2 + (-2 - (-2))2

=  √(-12)2 + (-2 + 2)2

=  √144 + 0

=  √144

=  12

AB  =  BC

Since length of two sides are equal, the given points are the vertices of a triangle.

Example 2 :

In a classroom 4 friends are seated at the points A,B,C and D as shown in figure given below. Champa and Chameli walk into the class and after observing for a few minutes champa asks Chameli,"Don't you think ABCD is a square?" Chameli disagrees. Using distance formula, find which of them is correct.

Solution :

It can be observed that A (3, 4) , B (6, 7), C(9, 4) and D(6, 1) are the position of these 4 friends.

Length of AB :

Here, x1  =  3, y1  =  4, x2  =  6  and  y2  =  7

=  √(6 - 3)2 + (7 - 4)2

=  √(3)2 + (3)2

=  √9 + 9

=  √18

=  3√2

Length of BC :

Here, x1  =  6, y1  =  7, x2  =  9  and  y2  =  4

=  √(9 - 6)2 + (4 - 7)2

=  √(3)² + (-3)²

=  √(9 + 9)

=  √18

=  3√2

Length of CD :

Here, x1  =  9, y1  =  4, x2  =  6  and  y2  =  1

=  √(6 - 9)² + (1 - 4)²

=  √(-3)² + (-3)²

=  √9 + 9

=  √18

=  3√2

Length of DA :

Here, x1  =  6, y1  =  1, x2  =  3  and  y2  =  4

=  √(3 - 6)² + (4 - 1)²

=  √(-3)² + (3)²

=  √9 + 9

=  √18

=  3√2

Length of diagonal AC :

Here, x1  =  3, y1  =  4, x2  =  9  and  y2  =  4

=  √(9 - 3)2 + (4 - 4)2

=  √62 + 02

=  √36

=  6

Length of diagonal BD :

Here, x1  =  6, y1  =  7, x2  =  6  and  y2  =  1

=  √(6 - 6)2 + (1 - 7)2

=  √02 + (-6)2

=  √36

=  6

It can be observed that all the sides of this quadrilateral ABCD are the same length and also the diagonals are of the same length.

Therefore, ABCD is a square. Hence, Champa was correct.

Apart from the stuff given in this section, if you need any other stuff in math, please use our google custom search here

Kindly mail your feedback to v4formath@gmail.com

## Recent Articles

1. ### Angular Speed and Linear Speed

Dec 07, 22 05:15 AM

Angular Speed and Linear Speed - Concepts - Formulas - Examples

2. ### Linear Speed Formula

Dec 07, 22 05:13 AM

Linear Speed Formula and Examples