FINDING DISTANCE BETWEEN TWO POINTS EXAMPLES

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Let (x1, y1) and (x2, y2) be the two points as shown below. 

Then, the formula for the distance between the two points is 

√[(x2 - x1)2 + (y2 - y1)2]

Examples

Example 1 :

Check whether (5,-2) (6,4) and (7,-2) are the vertices of an isosceles triangle.

Solution :

Let the given points as A(5,-2)  B(6,4) and C(7,-2)

Distance between two points = √(x2 - x1)2(y2 - y1)2

Length of the side AB :

Here, x1  =  5, y1  =  -2, x2  =  6  and  y₂  =  4

  =  √(6 - 5)2 + (4 - (-2))2

  =  √12 + (4+2)2

  =  √1 + 36

  =  √37

Length of the side BC :

Here, x1  =  6, y1  =  4, x2  =  7  and  y₂  =  -2

  =  √(7 - 6)2 + (-2 - 4)2

  =  √12 + (-6)2

  =  √1 + 36

  =  √37

Length of the side CA :

Here, x1  =  7, y1  =  -2, x2  =  5  and  y₂  =  -2

  =  √(-5 - 7)2 + (-2 - (-2))2

  =  √(-12)2 + (-2 + 2)2

  =  √144 + 0

  =  √144

  =  12

AB  =  BC

Since length of two sides are equal, the given points are the vertices of a triangle.

Example 2 :

In a classroom 4 friends are seated at the points A,B,C and D as shown in figure given below. Champa and Chameli walk into the class and after observing for a few minutes champa asks Chameli,"Don't you think ABCD is a square?" Chameli disagrees. Using distance formula, find which of them is correct.

Solution :

It can be observed that A (3, 4) , B (6, 7), C(9, 4) and D(6, 1) are the position of these 4 friends.

Length of AB :

Here, x1  =  3, y1  =  4, x2  =  6  and  y2  =  7

  =  √(6 - 3)2 + (7 - 4)2

  =  √(3)2 + (3)2

  =  √9 + 9

  =  √18

  =  3√2

Length of BC :

Here, x1  =  6, y1  =  7, x2  =  9  and  y2  =  4

  =  √(9 - 6)2 + (4 - 7)2

  =  √(3)² + (-3)²

  =  √(9 + 9)

  =  √18

  =  3√2

Length of CD :

Here, x1  =  9, y1  =  4, x2  =  6  and  y2  =  1

  =  √(6 - 9)² + (1 - 4)²

  =  √(-3)² + (-3)²

  =  √9 + 9

  =  √18

  =  3√2

Length of DA :

Here, x1  =  6, y1  =  1, x2  =  3  and  y2  =  4

  =  √(3 - 6)² + (4 - 1)²

  =  √(-3)² + (3)²

  =  √9 + 9

  =  √18

  =  3√2

Length of diagonal AC :

Here, x1  =  3, y1  =  4, x2  =  9  and  y2  =  4

  =  √(9 - 3)2 + (4 - 4)2

  =  √62 + 02

  =  √36

  =  6

Length of diagonal BD : 

Here, x1  =  6, y1  =  7, x2  =  6  and  y2  =  1

  =  √(6 - 6)2 + (1 - 7)2

  =  √02 + (-6)2

  =  √36

  =  6

It can be observed that all the sides of this quadrilateral ABCD are the same length and also the diagonals are of the same length.

Therefore, ABCD is a square. Hence, Champa was correct.

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge.png

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 40)

    Dec 25, 25 08:30 AM

    digitalsatmath422.png
    10 Hard SAT Math Questions (Part - 40)

    Read More

  2. 10 Hard SAT Math Questions (Part - 41)

    Dec 24, 25 07:58 PM

    digitalsatmath423.png
    10 Hard SAT Math Questions (Part - 41)

    Read More

  3. ASTC Formula in Trigonometry

    Dec 23, 25 11:34 PM

    astc1
    ASTC Formula in Trigonometry - Concepts - Examples and Solved Problems

    Read More