FINDING DISTANCE BETWEEN TWO POINTS EXAMPLES

Finding Distance Between Two Points Examples :

To find the distance between two points, we use the formula given below.

d  =  √(x- x1)(y- x1)2

Finding Distance Between Two Points Examples

Example 1 :

Check whether (5,-2) (6,4) and (7,-2) are the vertices of an isosceles triangle.

Solution :

Let the given points as A(5,-2)  B(6,4) and C(7,-2)

Distance between two points = √(x2 - x1)2(y2 - y1)2

Length of the side AB :

Here, x1  =  5, y1  =  -2, x2  =  6  and  y₂  =  4

=  √(6 - 5)2 + (4 - (-2))2

=  √12 + (4+2)2

=  √1 + 36

=  √37

Length of the side BC :

Here, x1  =  6, y1  =  4, x2  =  7  and  y₂  =  -2

=  √(7 - 6)2 + (-2 - 4)2

=  √12 + (-6)2

=  √1 + 36

=  √37

Length of the side CA :

Here, x1  =  7, y1  =  -2, x2  =  5  and  y₂  =  -2

=  √(-5 - 7)2 + (-2 - (-2))2

=  √(-12)2 + (-2 + 2)2

=  √144 + 0

=  √144

=  12

AB = BC. Since length of two sides are equal, the given points are the vertices of a triangle.

Example 2 :

In a classroom 4 friends are seated at the points A,B,C and D as shown in figure given below. Champa and Chameli walk into the class and after observing for a few minutes champa asks Chameli,"Don't you think ABCD is a square?" Chameli disagrees. Using distance formula, find which of them is correct. Solution :

It can be observed that A (3, 4) , B (6, 7), C(9, 4) and D(6, 1) are the position of these 4 friends.

Length of AB :

Here, x1  =  3, y1  =  4, x2  =  6  and  y2  =  7

=  √(6 - 3)2 + (7 - 4)2

=  √(3)2 + (3)2

=  √9 + 9

=  √18

=  3√2

Length of BC :

Here, x1  =  6, y1  =  7, x2  =  9  and  y2  =  4

=  √(9 - 6)2 + (4 - 7)2

=  √(3)² + (-3)²

=  √(9 + 9)

=  √18

=  3√2

Length of CD :

Here, x1  =  9, y1  =  4, x2  =  6  and  y2  =  1

=  √(6 - 9)² + (1 - 4)²

=  √(-3)² + (-3)²

=  √9 + 9

=  √18

=  3√2

Length of DA :

Here, x1  =  6, y1  =  1, x2  =  3  and  y2  =  4

=  √(3 - 6)² + (4 - 1)²

=  √(-3)² + (3)²

=  √9 + 9

=  √18

=  3√2

Length of diagonal AC :

Here, x1  =  3, y1  =  4, x2  =  9  and  y2  =  4

=  √(9 - 3)2 + (4 - 4)2

=  √62 + 02

=  √36

=  6

Length of diagonal BD :

Here, x1  =  6, y1  =  7, x2  =  6  and  y2  =  1

=  √(6 - 6)2 + (1 - 7)2

=  √02 + (-6)2

=  √36

=  6

It can be observed that all the sides of this quadrilateral ABCD are the same length and also the diagonals are of the same length.

Therefore, ABCD is a square. Hence, Champa was correct. After having gone through the stuff given above, we hope that the students would have understood, finding distance between two points.

Apart from the stuff given in this section, if you need any other stuff in math, please use our google custom search here

You can also visit our following web pages on different stuff in math.

WORD PROBLEMS

Word problems on simple equations

Word problems on linear equations

Word problems on quadratic equations

Algebra word problems

Word problems on trains

Area and perimeter word problems

Word problems on direct variation and inverse variation

Word problems on unit price

Word problems on unit rate

Word problems on comparing rates

Converting customary units word problems

Converting metric units word problems

Word problems on simple interest

Word problems on compound interest

Word problems on types of angles

Complementary and supplementary angles word problems

Double facts word problems

Trigonometry word problems

Percentage word problems

Profit and loss word problems

Markup and markdown word problems

Decimal word problems

Word problems on fractions

Word problems on mixed fractrions

One step equation word problems

Linear inequalities word problems

Ratio and proportion word problems

Time and work word problems

Word problems on sets and venn diagrams

Word problems on ages

Pythagorean theorem word problems

Percent of a number word problems

Word problems on constant speed

Word problems on average speed

Word problems on sum of the angles of a triangle is 180 degree

OTHER TOPICS

Profit and loss shortcuts

Percentage shortcuts

Times table shortcuts

Time, speed and distance shortcuts

Ratio and proportion shortcuts

Domain and range of rational functions

Domain and range of rational functions with holes

Graphing rational functions

Graphing rational functions with holes

Converting repeating decimals in to fractions

Decimal representation of rational numbers

Finding square root using long division

L.C.M method to solve time and work problems

Translating the word problems in to algebraic expressions

Remainder when 2 power 256 is divided by 17

Remainder when 17 power 23 is divided by 16

Sum of all three digit numbers divisible by 6

Sum of all three digit numbers divisible by 7

Sum of all three digit numbers divisible by 8

Sum of all three digit numbers formed using 1, 3, 4

Sum of all three four digit numbers formed with non zero digits

Sum of all three four digit numbers formed using 0, 1, 2, 3

Sum of all three four digit numbers formed using 1, 2, 5, 6 