FINDING CENTER FOCI VERTICES AND DIRECTRIX OF ELLIPSE AND HYPERBOLA

Ellipse - Symmetric About x-Axis

where a2 > b2 and major axis is along x-axis.

Center : (0, 0).

Foci : F(ae, 0) and F'(-ae, 0)

Vertices : A(a, 0) and A'(-a, 0).

Equations of directrices : x = a/e and x = -a/e

Ellipse - Symmetric About y-Axis

Center : (0, 0).

Foci : F(0, ae) and F'(0, -ae)

Vertices : A(0, a) and A'(0, -a).

Equations of directrices : y = a/e and y = -a/e

Hyperbola - Symmetric About x-Axis

Center : (0, 0).

Foci : F(ae, 0) and F'(-ae, 0)

Vertices : A(a, 0) and A'(-a, 0).

Equations of directrices : x = a/e and x = -a/e

Hyperbola - Symmetric About y-Axis

Center : (0, 0).

Foci : F(0, ae) and F'(0, -ae)

Vertices : A(0, a) and A'(0, -a).

Equations of directrices : y = a/e and y = -a/e

Examples 1-2 : Find center, foci, vertices, and equations of directrices of of the following ellipses :

Example 1 :

Solution :

The given ellipse is symmetric about x-axis.

a2 = 25

a2 = 52

a = 5

b2 = 9

b2 = 32

b = 3

Center : (0, 0)

Foci :

F(ae, 0)  and  F'(-ae, 0)

Foci are F(4, 0) and F'(-4, 0).

Vertices :

A(a, 0)  and  A'(-a, 0)

A(5, 0)  and  A'(-5, 0) 

Equations of directrices :

x = a/e  and  x = -a/e

Example 2 :

Solution :

The given ellipse is symmetric about y-axis.

a2 = 10

a = √10

b2 = 3

a = √3

Center : (0, 0)

Foci :

F1 (ae, 0) F2 (-ae, 0)

Foci are F(0, 7) and F'(0, 7).

Vertices :

A(0, a)  and  A'(0, -a)

A(0, √10)  and  A'(0, -√10

Equations of directrices :

y = a/e  and  y = -a/e

Example 3 :

Solution :

The given hyperbola is symmetric about x-axis.

a2 = 25

a2 = 52

a = 5

b2 = 144

b2 = 122

b = 12

Center : (0, 0)

Foci :

F(ae, 0)  and  F'(-ae, 0)

Foci are F(13, 0) and F'(-13, 0).

Vertices :

A (a, 0) A' (-a, 0) 

A (5, 0) A' (-5, 0

Equation of directrices :

x = a/e  and  x = -a/e

Example 4 :

Solution :

The given hyperbola is symmetric about y-axis.

a2 = 16

a2 = 42

a = 4

b2 = 9

b2 = 32

b = 3

Center : (0, 0)

Foci :

F(0, ae)  and  F'(0, -ae)

Foci are F(0, 5) and F'(0, -5).

Vertices :

A(0, a)  and  A'(0, -a) 

A(0, 4)  and  A'(0, -4

Equations of directrices :

y = a/e  and  y = -a/e

Find the eccentricity, centre, foci, vertices of the following ellipses

Example 5 :

(x + 3)2/6 + (y - 5)2/4 = 1

Solution :

(x + 3)2/6 + (y - 5)2/4 = 1

Let X = x + 3 and Y = y - 5

X2/6 + Y2/4 = 1

The ellipse is symmeteric about x-axis.

a2 = 6 and b2 = 4

a = √6 and b = 2

Center :

Referred to X and Y

(0, 0)

Referred to x and y

x + 3 = 0

x = -3

y - 5 = 0

y = 5

(-3, 5)

Vertices :

Referred to X and Y

A(a, 0)

A'(-a, 0)

A(√6, 0)

A'(-√6, 0)

Referred to x and y

x + 3 = √6

x = √6 - 3

y - 5 = 0

y = 5

A(√6 - 3, 5)

x + 3 = -√6

x = -√6 - 3

y - 5 = 0

y = 5

A(-√6 - 3, 5)

Foci :

F(ae, 0)  and  F'(-ae, 0)

e = √1 - (b2/a2)

e = √1 - (4/6)

√(6 - 4)/6

√2/6

= √(1/3)

e = 1/√3

ae = √6 (1/√3)

= √2√3(1/√3)

= √2

x + 3 = √2 and x + 3 = -√2

x = √2 - 3 and x = -√2 - 3

F (√2 - 3, 5) F' (-√2 - 3, 5)

Find the eccentricity, centre, foci, vertices of the following ellipses

Example 6 :

36x2 + 4y2 - 72x + 32y - 44 = 0

Solution :

36x2 + 4y2 - 72x + 32y - 44 = 0

36x2 - 72x + 4y+ 32y - 44 = 0

36(x2 - 2x) + 4(y+ 8y) - 44 = 0

36(x2 - 2x(1) + 12 - 12) + 4(y+ 2y(4) + 42 - 42 ) - 44 = 0

36[(x - 1)2 - 1] + 4[(y + 4)2 - 16] - 44 = 0

36(x - 1)2 - 36 + 4(y + 4)2 - 64 - 44 = 0

36(x - 1)2 + 4(y + 4)2 - 36 - 64 - 44 = 0

36(x - 1)2 + 4(y + 4)2 - 144 = 0

36(x - 1)2 + 4(y + 4)2 = 144

Dividing by 144 on both sides

(x - 1)2/4 + (y + 4)2/36 = 1

Let X = x - 1 and Y = y + 4

X2/4 + Y2/36 = 1

The ellipse is symmeteric about y-axis.

a2 = 36 and b2 = 4

a = 6 and b = 2

Center :

Referred to X and Y

(0, 0)

Referred to x, y

x - 1 = 0 and y + 4 = 0

x = 1 and y = -4

(1, -4)

Eccentricity :

e = √1 - (b2/a2)

e = √1 - (4/36)

√(36 - 4)/36

√32/36

= 4√2/6

= 2√2/3

ae = 6(2√2/3)

= 4√2

Foci :

F (0, ae) F'(0, -ae)

Referred to X and Y :

F (0, 4√2) F'(0, -4√2)

Referred to x and y :

x - 1 = 0, y + 4 = 4√2

x = 1, y = 4√2 -  4

(1, 4√2 -  4)

x - 1 = 0, y + 4 = -4√2

x = 1, y = -4√2 -  4

(1, -4√2 -  4)

Vertices :

A(0, b) A'(o, -b)

A(0, 2) A'(o, -2)

Referred to X and Y :

x - 1 = 0, y + 4 = 2

x = 1, y = 2 -  4

A (1, -2)

x - 1 = 0, y + 4 = -2

x = 1, y = -2 -  4

A'(1, -6)

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 213)

    Jul 13, 25 09:51 AM

    digitalsatmath292.png
    Digital SAT Math Problems and Solutions (Part - 213)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 212)

    Jul 13, 25 09:32 AM

    digitalsatmath290.png
    Digital SAT Math Problems and Solutions (Part - 212)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 211)

    Jul 11, 25 08:34 AM

    digitalsatmath289.png
    Digital SAT Math Problems and Solutions (Part - 211)

    Read More