where a2 > b2 and major axis is along x-axis.
Center : (0, 0).
Foci : F(ae, 0) and F'(-ae, 0)
Vertices : A(a, 0) and A'(-a, 0).
Equations of directrices : x = a/e and x = -a/e
Center : (0, 0).
Foci : F(0, ae) and F'(0, -ae)
Vertices : A(0, a) and A'(0, -a).
Equations of directrices : y = a/e and y = -a/e
Center : (0, 0).
Foci : F(ae, 0) and F'(-ae, 0)
Vertices : A(a, 0) and A'(-a, 0).
Equations of directrices : x = a/e and x = -a/e
Center : (0, 0).
Foci : F(0, ae) and F'(0, -ae)
Vertices : A(0, a) and A'(0, -a).
Equations of directrices : y = a/e and y = -a/e
Examples 1-2 : Find center, foci, vertices, and equations of directrices of of the following ellipses :
Example 1 :
Solution :
The given ellipse is symmetric about x-axis.
a2 = 25 a2 = 52 a = 5 |
b2 = 9 b2 = 32 b = 3 |
Center : (0, 0)
Foci :
F(ae, 0) and F'(-ae, 0)
Foci are F(4, 0) and F'(-4, 0).
Vertices :
A(a, 0) and A'(-a, 0)
A(5, 0) and A'(-5, 0)
Equations of directrices :
x = a/e and x = -a/e
Example 2 :
Solution :
The given ellipse is symmetric about y-axis.
a2 = 10 a = √10 |
b2 = 3 a = √3 |
Center : (0, 0)
Foci :
F1 (ae, 0) F2 (-ae, 0)
Foci are F(0, √7) and F'(0, √7).
Vertices :
A(0, a) and A'(0, -a)
A(0, √10) and A'(0, -√10)
Equations of directrices :
y = a/e and y = -a/e
Example 3 :
Solution :
The given hyperbola is symmetric about x-axis.
a2 = 25 a2 = 52 a = 5 |
b2 = 144 b2 = 122 b = 12 |
Center : (0, 0)
Foci :
F(ae, 0) and F'(-ae, 0)
Foci are F(13, 0) and F'(-13, 0).
Vertices :
A (a, 0) A' (-a, 0)
A (5, 0) A' (-5, 0)
Equation of directrices :
x = a/e and x = -a/e
Example 4 :
Solution :
The given hyperbola is symmetric about y-axis.
a2 = 16 a2 = 42 a = 4 |
b2 = 9 b2 = 32 b = 3 |
Center : (0, 0)
Foci :
F(0, ae) and F'(0, -ae)
Foci are F(0, 5) and F'(0, -5).
Vertices :
A(0, a) and A'(0, -a)
A(0, 4) and A'(0, -4)
Equations of directrices :
y = a/e and y = -a/e
Find the eccentricity, centre, foci, vertices of the following ellipses
Example 5 :
(x + 3)2/6 + (y - 5)2/4 = 1
Solution :
(x + 3)2/6 + (y - 5)2/4 = 1
Let X = x + 3 and Y = y - 5
X2/6 + Y2/4 = 1
The ellipse is symmeteric about x-axis.
a2 = 6 and b2 = 4
a = √6 and b = 2
Center :
Referred to X and Y (0, 0) |
Referred to x and y x + 3 = 0 x = -3 y - 5 = 0 y = 5 (-3, 5) |
Vertices :
Referred to X and Y A(a, 0) A'(-a, 0) A(√6, 0) A'(-√6, 0) |
Referred to x and y x + 3 = √6 x = √6 - 3 y - 5 = 0 y = 5 A(√6 - 3, 5) |
x + 3 = -√6 x = -√6 - 3 y - 5 = 0 y = 5 A(-√6 - 3, 5) |
Foci :
F(ae, 0) and F'(-ae, 0)
e = √1 - (b2/a2)
e = √1 - (4/6)
= √(6 - 4)/6
= √2/6
= √(1/3)
e = 1/√3
ae = √6 (1/√3)
= √2√3(1/√3)
= √2
x + 3 = √2 and x + 3 = -√2
x = √2 - 3 and x = -√2 - 3
F (√2 - 3, 5) F' (-√2 - 3, 5)
Find the eccentricity, centre, foci, vertices of the following ellipses
Example 6 :
36x2 + 4y2 - 72x + 32y - 44 = 0
Solution :
36x2 + 4y2 - 72x + 32y - 44 = 0
36x2 - 72x + 4y2 + 32y - 44 = 0
36(x2 - 2x) + 4(y2 + 8y) - 44 = 0
36(x2 - 2x(1) + 12 - 12) + 4(y2 + 2y(4) + 42 - 42 ) - 44 = 0
36[(x - 1)2 - 1] + 4[(y + 4)2 - 16] - 44 = 0
36(x - 1)2 - 36 + 4(y + 4)2 - 64 - 44 = 0
36(x - 1)2 + 4(y + 4)2 - 36 - 64 - 44 = 0
36(x - 1)2 + 4(y + 4)2 - 144 = 0
36(x - 1)2 + 4(y + 4)2 = 144
Dividing by 144 on both sides
(x - 1)2/4 + (y + 4)2/36 = 1
Let X = x - 1 and Y = y + 4
X2/4 + Y2/36 = 1
The ellipse is symmeteric about y-axis.
a2 = 36 and b2 = 4
a = 6 and b = 2
Center :
Referred to X and Y (0, 0) |
Referred to x, y x - 1 = 0 and y + 4 = 0 x = 1 and y = -4 (1, -4) |
Eccentricity :
e = √1 - (b2/a2)
e = √1 - (4/36)
= √(36 - 4)/36
= √32/36
= 4√2/6
= 2√2/3
ae = 6(2√2/3)
= 4√2
Foci :
F (0, ae) F'(0, -ae)
Referred to X and Y :
F (0, 4√2) F'(0, -4√2)
Referred to x and y :
x - 1 = 0, y + 4 = 4√2 x = 1, y = 4√2 - 4 (1, 4√2 - 4) |
x - 1 = 0, y + 4 = -4√2 x = 1, y = -4√2 - 4 (1, -4√2 - 4) |
Vertices :
A(0, b) A'(o, -b)
A(0, 2) A'(o, -2)
Referred to X and Y :
x - 1 = 0, y + 4 = 2 x = 1, y = 2 - 4 A (1, -2) |
x - 1 = 0, y + 4 = -2 x = 1, y = -2 - 4 A'(1, -6) |
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Jul 13, 25 09:51 AM
Jul 13, 25 09:32 AM
Jul 11, 25 08:34 AM