**Finding area in the coordinate plane :**

We can use familiar area formulas to find areas of polygons in the coordinate plane.

**Example 1 : **

A gardener uses a coordinate grid to design a new garden. The gardener uses polygon WXYZ on the grid to represent the garden. The vertices of this polygon are W(3, 3), X(−3, 3), Y(−3, −3), and Z(3, −3). Each grid unit represents one yard.Find the area of the garden.

**Solution : **

**Step 1 :**

Graph the vertices, and connect them in order.

From the graph, it clear that the shape of the garden is a square.

Let us find lengths of the sides YZ and WZ.

**Step 2 : **

Find the length of the side YZ.

The ordered pair of Y is (-3, -3).

The x-coordinate of Y is -3, so point Y is |-3| = 3 yards from the y-axis.

The ordered pair of Z is (3, -3).

The x-coordinate of Z is 3, so point Z is |3| = 3 yards from the y-axis.

Find the sum of the distances :

The length of side YZ = 3 + 3 = 6 yards

**Step 3 :**

Find the length of the side WZ.

The ordered pair of W is (3, 3).

The y-coordinate of W is 3, so point W is |3| = 3 yards from the x-axis.

The ordered pair of Z is (3, -3).

The y-coordinate of Z is -3, so point Z is |3| = 3 yards from the x-axis.

Find the sum of the distances :

The length of side WZ = 3 + 3 = 6 yards.

**Step 4 :**

Find the area of the square WXYZ using the lengths of the sides YZ and WZ.

Area of the square WXYZ = side x side

Area of the square WXYZ = YZ x WZ

Area of the square WXYZ = 6 x 6

Area of the square WXYZ = 36 square yards.

**Example 2 : **

Caleb is planning a new deck for his house. He graphs the deck as polygon ABCDEF on a coordinate plane in which each grid unit represents one foot. The vertices of the polygon are A(1, 0), B(3, 2), C(3, 5), D(8, 5), E(8, 2), and F(6, 0). What is the area of Caleb’s deck ?

**Solution : **

**Step 1 :**

Graph the vertices, and connect them in order.

Draw a horizontal dashed line segment to divide the polygon into two quadrilaterals — a rectangle and a parallelogram.

**Step 2 :**

Find the area of the rectangle using the length of segment BE as the base b and the length of segment BC as the height h.

b = |8| − |3| = 5 feet

h = |5| − |2| = 3 feet

A = bh = 5 x 3 = 15 square feet

**Step 3 :**

Find the area of the parallelogram using the length of segment AF as the base. Use the length of a segment from F(6, 0) to the point (6, 2) as the height h.

b = |6| − |1| = 5 feet

h = |2| − 0 = 2 feet

A = bh = 5 x 2 = 10 square feet

**Step 4 :**

Add the areas to find the total area of the deck.

hence, the required area is

= 15 + 10 = 25 square feet

After having gone through the stuff given above, we hope that the students would have understood "Finding area in the coordinate plane".

Apart from the stuff given above, if you want to know more about "Finding area in the coordinate plane", Please click here

Apart from the stuff given in this section, if you need any other stuff in math, please use our google custom search here.

Widget is loading comments...

You can also visit our following web pages on different stuff in math.

**WORD PROBLEMS**

**Word problems on simple equations **

**Word problems on linear equations **

**Word problems on quadratic equations**

**Area and perimeter word problems**

**Word problems on direct variation and inverse variation **

**Word problems on comparing rates**

**Converting customary units word problems **

**Converting metric units word problems**

**Word problems on simple interest**

**Word problems on compound interest**

**Word problems on types of angles **

**Complementary and supplementary angles word problems**

**Markup and markdown word problems **

**Word problems on mixed fractrions**

**One step equation word problems**

**Linear inequalities word problems**

**Ratio and proportion word problems**

**Time and work word problems**

**Word problems on sets and venn diagrams**

**Pythagorean theorem word problems**

**Percent of a number word problems**

**Word problems on constant speed**

**Word problems on average speed **

**Word problems on sum of the angles of a triangle is 180 degree**

**OTHER TOPICS **

**Time, speed and distance shortcuts**

**Ratio and proportion shortcuts**

**Domain and range of rational functions**

**Domain and range of rational functions with holes**

**Graphing rational functions with holes**

**Converting repeating decimals in to fractions**

**Decimal representation of rational numbers**

**Finding square root using long division**

**L.C.M method to solve time and work problems**

**Translating the word problems in to algebraic expressions**

**Remainder when 2 power 256 is divided by 17**

**Remainder when 17 power 23 is divided by 16**

**Sum of all three digit numbers divisible by 6**

**Sum of all three digit numbers divisible by 7**

**Sum of all three digit numbers divisible by 8**

**Sum of all three digit numbers formed using 1, 3, 4**

**Sum of all three four digit numbers formed with non zero digits**